GABLS4-LES: une intercomparaison des modèles LES dans des conditions extrêmement stables observées en Antarctique

<u>Fleur Couvreux*</u>, E Bazile*, G Canut*, P LeMoigne*, B Maronga¹, V. Fuka², S. Basu³, B. Van Stratum⁴, C. Van Heerwaarden⁴, G. Matheou⁵, M Chinita⁵, A Cheng⁶, J Edwards⁷, C Genthon⁸

* CNRM-GAME, Météo-France and CNRS, Toulouse, France

- 1 IMC, Leibniz Universitat, Hannover, Germany
 - 2 University of Praha, Praha, Czek Republic
 - 3 North Carolina State University, USA
 - 4 Max Planck Institute, Hamburg, Germany
 - 5 Jet Propulsion Laboratory, NASA, USA
- 6 Center for Weather and Climate Prediction, NOAA, USA

7 Met Office, United Kingdom 8 LGGE, Grenoble, France

Défaut des paramétrisations en conditions stables => un nouveau cas GABLS

- En conditions de forte stabilité de l'atmosphère et selon la paramétrisation utilisée, les modèles NWP & GCM présentent un excès de mélange des basses couches ou un fort découplage à la surface → biais chaud ou froid (Holtslag et al 2013) => besoin de référence (LES) pour le développement de paramétrisations
- Une 4^{eme} intercomparaison GABLS => focus sur des conditions très stables (Ri > 1), avec interaction avec la surface (surface simple=neige), observations dataset

Questions :

- peut on reproduire les observations de la tour avec les LES ?

- pour une résolution et un forçage donnés, comment différentes LES se comparent elles ?

- quelle est la résolution nécessaire pour résoudre les principaux processus dans un tel cas ?

Biais de température de surface /MODIS (Freville et al. 2014)

GABLS4: 3 intercomparaisons en 1

- <u>Stage 0:</u> Land Surface Model (LSM=snow scheme) driven by observations for 15 days
- <u>Stage 1:</u> Single Column Model (SCM) with <u>all the physics and</u> <u>surface interaction</u>: 36h forecast starting the 11th Dec 2009.
- <u>Stage 2:</u> Large-Eddy Simulation (LES) and SCM, stage1 atmospheric forcing but <u>prescribed</u> surface temperature

Stage 3: LES and SCM. "ideal GABLS4" or simplified: <u>no</u> <u>radiation, no specific humidity, constant geostrophic wind, no</u> <u>advection, Ts prescribed</u>. Easier for the LES community and DNS

<u>Observations dataset:</u> Concordia

- -5 sonic anemometers (7,15, 23,30,38m)
- low fqcy parameters (3,9,18,25,33,42m)
- radiation measurements

Stage 3 : setup & LES participantes

LES Meso-NH : comparaison aux observations de la tour

- turbulence plus importante le jour/obs => réduite par un zo plus faible

Intercomparaison LES: champs de surface

Sensibilité à la résolution : pour PALM & JPL

intercomparaison LES: distributions simulées/observées

Distribution plus ou moins skewnées

FRANCE

intercomparaison LES: distributions simulées/observées

Coefficients de transfert chaleur le jour : <wthl>(z=2m)=f(Ws(z=3m)*∆th(1-3m))

• Pentes différentes entre les LES même si noyau dur

METEO FRANCE

Régimes turbulents : en fonction des LES

Régimes turbulents : en fonction des LES

Régimes turbulents : en fonction des LES

Conclusions & Perspectives

Sensibilité à la résolution verticale & horizontale surt la nuit Pas de convergence (PALM-> 1m, JPL → 2m, HHLES → 0.25m) La nuit, tout se passe dans les 60m => très fine res° → besoin de définir un autre setup : restart à 0830 pour un petit domaine et plus fine résolution(tests avec HHLES → 0.25m)

Stage 3 (setup simplifié) très proche des setup + réaliste (Stage 2): bon accord avec les observations de la tour

Différences importantes entre LES en termes de flux de surface, de distributions horizontales, de spectres,... : peut-on relier ces différences à des différences de schémas de turbulence?

 \rightarrow en cours...

Acknowledgements

•The meteorological profiling observation program at Dome C which provides data for model evaluation / validation for GABLS4, is supported by IPEV (program CALVA), CNRS/INSU (program CLAPA) and OSUG (program CENACLAM). The IPY-CONCORDIASI program, supported by CNES, IPEV and CNRS, provided the rawindsonde data

•People responsible of the observations at DomeC and those who provided the data for the chosen period : Eric Aristidi (Laboratoire Lagrange, Université Nice Sophia Antipolis, France), Christian Lanconelli (ISAC/CNR, Italy), Ghislain Picard and Laurent Arnaud (LGGE, Grenoble, France), Andrea Pellegrini (ENEA, Italy) and Laura Ginoni. We also thanks Eric Brun (Météo-France, CNRM/GAME) and Irina Sandu (ECMWF) as a most valuable beta tester for the atmospheric forcing used in the SCM.

This work is supported by the french national programme LEFE/INSU

LES intercomparison : spectrum at observed levels

Turbulent regimes : resolution impact

LES intercomparison : spectrum at observed levels

0.03 0

Presentation of the various LES for stage 3

LES model	Horizontal resolution	Vertical resolution	Top of the domain	Domain size	<u>Time</u> step	Advection scheme (finite differences except noted)	Temporal <u>scheme</u>
<u>MesoNH</u>	5m/25m	2m (streched z>400m) stretched (1m-> 10m z<400m)	Sponge layer for z> 700m K=0.001	1x1x1 km ³ 5x5x1.6km ³	0.2s/0.3s	<u>Scalars</u> : monotonic Piecewise Parabolic Method <u>Momentum</u> : 4th order centered	Leap-frog scheme + asselin filter
PALM	5m/2m/1m	2m/2m/0.5m	Sponge layer z> 700m	1x1x1km³ 2.5x2.5x1km³	Variable (CFL<1 0.65-0.9s; 0.13-0.17s	<u>Scalars & momentum</u> : 5th order advection scheme (Wicher, Skamarock 2002)	<u>Third-order</u> Runge Kutta
JPL	5m	2m	Sponge layer for z> 700m t=600s	1x1x1km ³	Variable (CFL< 1.4;0.8-1.5s)	<u>Scalars and momentum</u> : <u>sixth-order fully</u> conservative <u>scheme</u>	Third-order Runge Kutta
<u>MicroHH</u>	5m	2m	Sponge layer z> 700m	3x3x0.5km ³	Variable (CFL < 1.2)	<u>Scalars and momentum</u> : 2nd <u>order with</u> 4th <u>order</u> interpolations	<u>Third-order</u> Runge Kutta
CLMM	5m	2m	Sponge layer z> 600m	1x1x1km³	Variable (CFL < 0.7)	<u>Scalars</u> : k=1/3 <u>scheme</u> <u>momentum</u> : 2nd order symetric centered differences	Third-order Runge Kutta with a fractional step method
NCSU	10m	10m	z> 600m K increases with height	1x1x1km³	0.25s	pseudo-spectral code (<mark>spectral in</mark> horizontal direction; 2nd-order <u>finite</u> <u>difference</u> in vertical)	<u>Second-order Adams-</u> Bashforth
SAM- IPHOC	100m	5m-> 300m (z<400m) → 10km (z=29km)	z>19km	6.4x6.4x1km³	2s	Scalars and momentum : 5th order ULTIMATE-MACHO for non-uniform vertical grid	<u>Third-order Adams-</u> Bashforth
SAM- IPHOC- HR	5m	2m	???	1x1x1km ³	0.5	Scalars and momentum : 5th order ULTIMATE-MACHO for non-uniform vertical grid	<u>Third-order Adams-</u> Bashforth

Presentation of the various LES for stage 3

LES model	Subgrid turbulence scheme	Surface scheme
MesoNH	Tke-l type with l equals to Deardorff length-scale : gradient approach with sgs eddy-diffusivities and a prognostic equation for sgs-tke	ISBA (Noilhan et al 1989) surface <u>scheme</u>
PALM	1.5 order scheme after Deardorff (1980) : gradient approch sith sgs eddy diffusivities and a prognostic equation for sgs-tke	Monin-Obukhov similarity theory
JPL	Buoyancy adjusted stretched vortex model : a bit different than tke-Smagorinskiy tupe with functional closures (Cung and Matheou 2014)	Monin-Obukhov similarity theory
MicroHH	Smagorinsky-Lilly stability correction from Lilly (1962) Fixed Prandtl number (1/3) wall-damping near the surface	Monin-Obukhov similarity theory with stability functions following Wilson (2001) for unstable condition and Hogstrom (1988) for stable conditions
CLMM	Sigma sgs model with an experimental stability correction	Monin-Obukhov similarity theory applied locally, fluxes computed iteratively
NCSU	Locally-averaged scale-dependent dynamic model (LASDD) Both Smagorinski coefficient and Prandtl numbers are determined dynamically	Monin-Obukhov similarity theory
SAM- IPHOC	IPHOC (intermediately prognostic higher-order turbulence closure): prognostic equations for 2nd & 3rd moments + Joint double gaussian distribution for thl, rt,w => 4th order moments & cloud variables	Monin-Obukhov similarity theory

Resolution of fluxes for the various LES

Les models	En stable	En instable
Meso-NH		
PALM $x = (1 - 6\zeta)^{1/4}$	$P_{\rm h} \bullet \Phi_{\rm m} = -3\zeta^{\frac{5}{6}},$	• $\Phi_{\rm m} = \log\left(\frac{1+x^2}{2}\left(\frac{1+x}{2}\right)^2\right) - 2\arctan(x) + \pi/2,$
w (1 05)	• $\Phi_{\rm h} = -2.5 \zeta^{\frac{1}{5}}$.	• $\Phi_{\rm h} = 2\log\left(\frac{1+x^2}{2}\right),$
JPL		

 $\underset{ustar=Kz \times \frac{\partial z}{\partial z} \times Phim(z/Lmo)}{\text{Micro}HH} \theta *= f(du/dz, d\theta/dz, \Phi m \Phi h, z/Lmo)$

