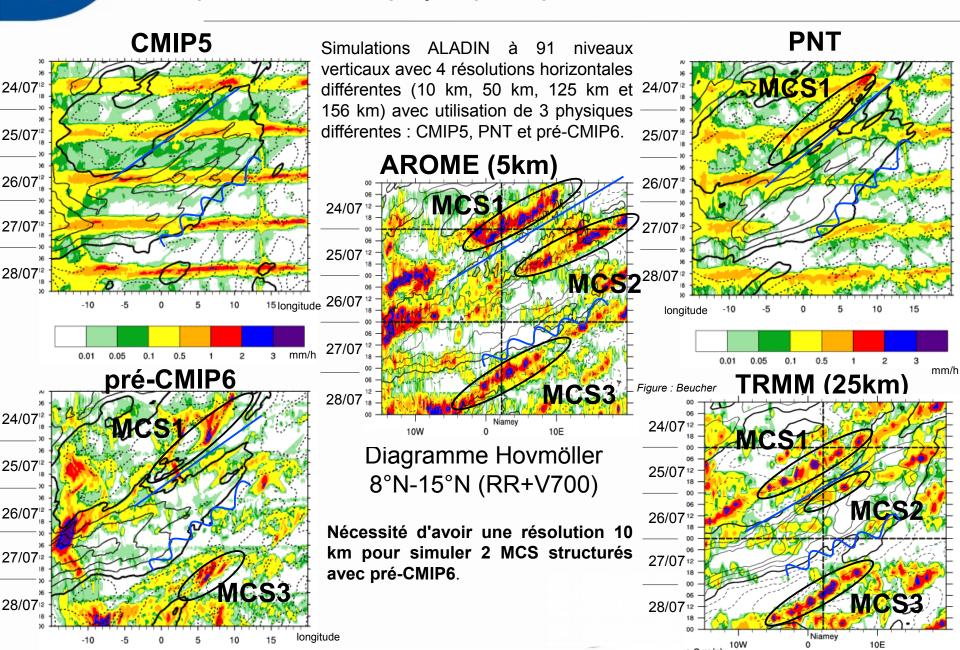

Introduction

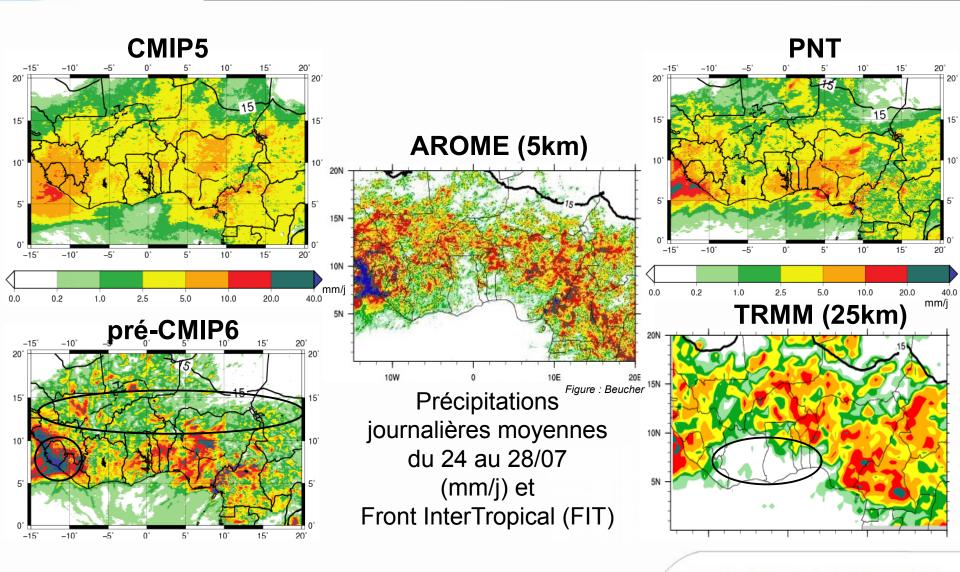
Objectifs: évaluer l'impact de PCMT sur un cas d'onde d'est africaine couplée à la convection de la campagne AMMA 2006 à 10 km de résolution.

Zone favorable à la convection ==> à l'avant des thalwegs générés par les ondes d'est

Méthode: simulation 3D à aire limitée (**LAM**) ALADIN avec convection paramétrée versus simulation AROME 5km avec convection explicite (**CRM**).

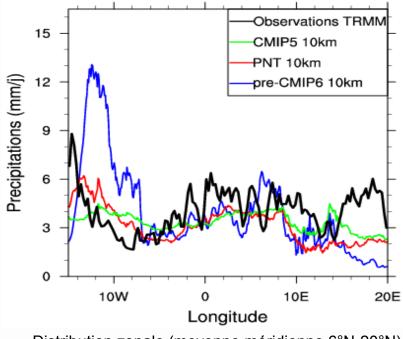
Domaine, conditions initiales, latérales, fréquences de couplage identiques.

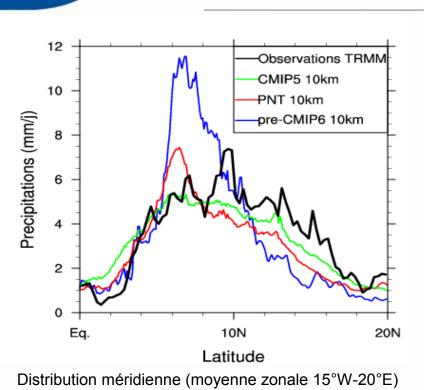

Plan

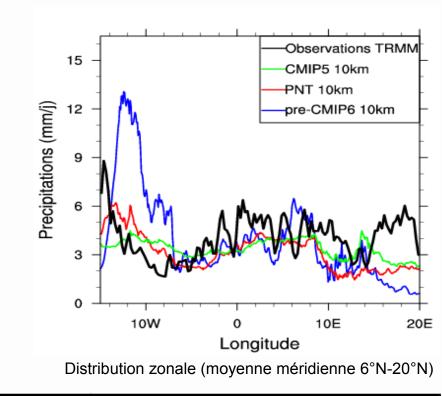

I/ Intercomparaison des physiques CMIP5, PNT et pré-CMIP6

II/ Étude approfondie de la physique pré-CMIP6 (Q1, Q2, Q3)

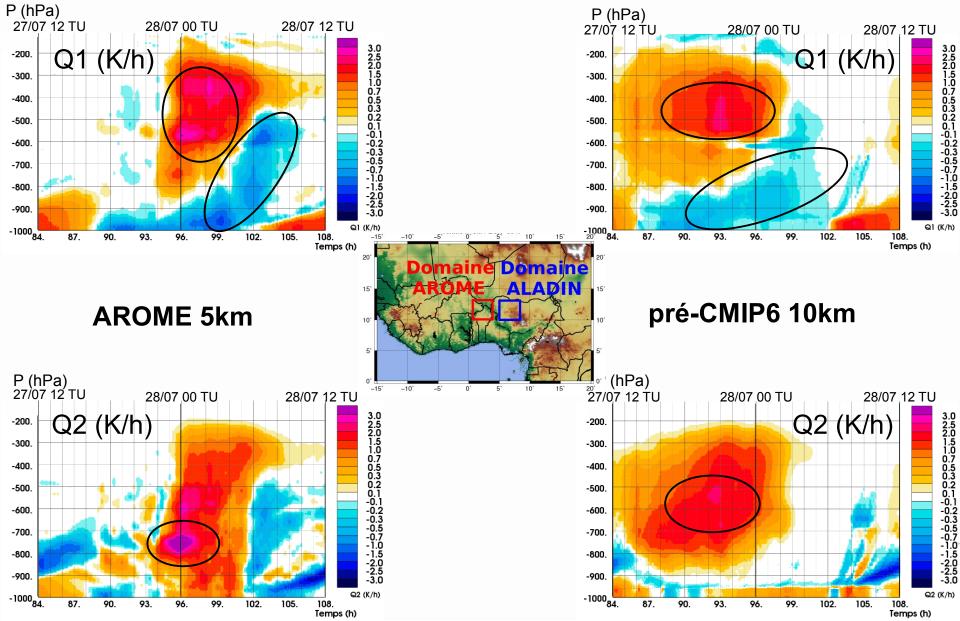
III/ Travail de thèse : Amélioration de la représentation de la vitesse verticale dans PCMT

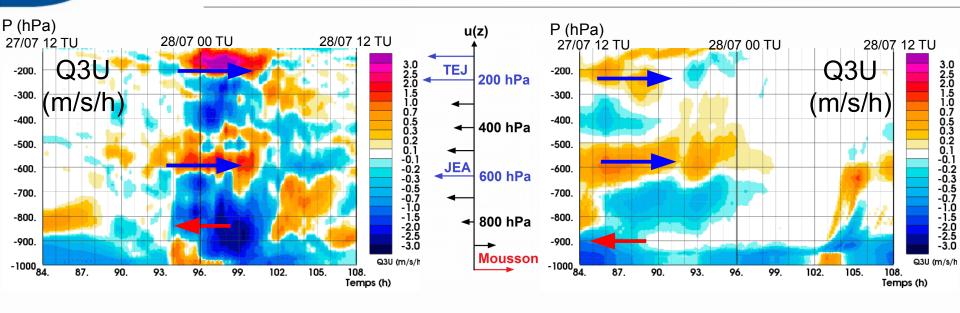




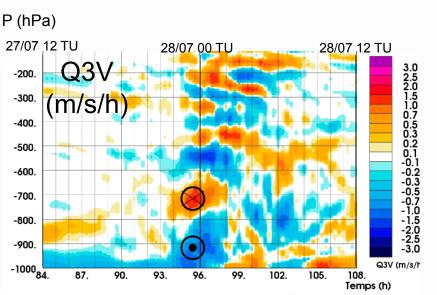

Distribution méridienne (moyenne zonale 15°W-20°E)

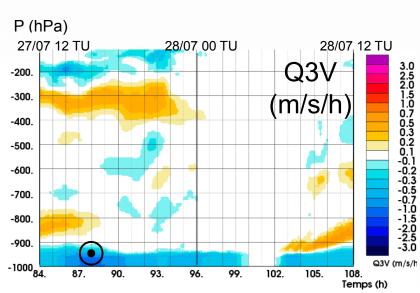
Distribution zonale (moyenne méridienne 6°N-20°N)





Simulations Moyenne 0°N-20°N Moyenne 6°N-20°N 15°W-15°W-20°E 20°E **Observations TRMM** 3,53 mm/j 4,06 mm/j pré-CMIP6 10 km 3,54 mm/j 3,93 mm/j PNT 10 km 3,03 mm/j 3,16 mm/j CMIP5 10 km 3,26 mm/j 3,38 mm/j


Analyse des termes Q1 et Q2 pour le MCS3


Analyse des termes Q3U et Q3V pour le MCS3

AROME 5km

pré-CMIP6 10km

Conclusion et perspective de l'évaluation

Conclusion

- Sur ce cas, nécessité d'avoir une résolution de 10 km pour avoir une représentation correcte de MCS structurés.
- pré-CMIP6 représente mieux les phénomènes convectifs que les physiques CMIP5 et PNT :
 - ✓ Phasage correct de la convection avec la dynamique.
 - ✓ Bonne variabilité spatiale des précipitations moyennes.
 - ✓ Amélioration du cycle diurne pour toutes les résolutions testées.
 - ✓ Trop de précipitations au niveau de la ZCIT autour de la côte guinéenne.
 - ✓ ZCIT située trop au sud.
 - ✓ Trop peu de précipitations dans la zone sahélienne.
- Évaluation de pré-CMIP6 au travers des termes Q1, Q2, Q3 :
 - ✓ Bonne correspondance des termes de la simulation paramétrée par rapport à ceux de la simulation explicite pour le MCS3.

Perspectives

- Méthode sensible à la définition des boîtes eulériennes ==> préférable d'avoir des boîtes lagrangiennes (suivi des MCS le long de leur cycle de vie)
- Étude de la structure verticale des termes Q1, Q2 et Q3 indépendamment de leur intensité (normalisation par les précipitations moyennes)
- Utilisation d'autres cas convectifs à traiter selon la même méthodologie (DEPHY2)

Travail de thèse : Amélioration de la représentation de la convection

Sujet de thèse : Amélioration de la représentation du cycle de vie de la convection dans les modèles de prévision du temps et du climat

Changements majeurs du comportement d'Arpège avec l'introduction de PCMT :

- Amélioration de la distribution du régime des pluies
- Amélioration du cycle diurne de la convection

Défauts restants :

- Trop de précipitations au niveau de la ZCIT
- ZCIT trop pincée
- Manque de déclenchement dans les zones continentales ayant de la CIN
- Manque de propagation

Idée : Prendre en compte les perturbations de pression pour corriger une partie de ces défauts.

« l'équation de la vitesse verticale » dans PCMT

Équation pronostique actuelle de la vitesse verticale sous-maille :

$$\frac{\partial \omega}{\partial t} = -\omega \frac{\partial \omega}{\partial p} + B_p \left(+ \left(\frac{\epsilon_t}{\rho} + \epsilon_0 + K_d \right) \omega^2 \right)$$

« l'équation de la vitesse verticale » dans PCMT

Équation pronostique actuelle de la vitesse verticale sous-maille :

$$\frac{\partial \omega}{\partial t} = -\omega \frac{\partial \omega}{\partial p} + B_p \left(+ \left(\frac{\epsilon_t}{\rho} + \epsilon_0 + K_d \right) \omega^2 \right)$$

« l'équation de la vitesse verticale » dans PCMT

Équation pronostique actuelle de la vitesse verticale sous-maille :

$$\frac{\partial \omega}{\partial t} = -\omega \frac{\partial \omega}{\partial p} + B_p \left(+ \left(\frac{\epsilon_t}{\rho} + \epsilon_0 + K_d \right) \omega^2 \right)$$

Équations pronostiques futures de la vitesse verticale sousmaille:

$$\begin{cases} \frac{\partial w}{\partial t} = -\left(u\frac{\partial w}{\partial x} + w\frac{\partial w}{\partial z}\right) + B_z\left(-\frac{1}{\rho}\frac{\partial P'}{\partial z}\right) \\ \frac{\partial u}{\partial t} = \left(-\frac{1}{\rho}\frac{\partial P'}{\partial x}\right) \\ \rho\frac{\partial u}{\partial x} + \frac{\partial \rho w}{\partial z} = 0 \\ \rho = \rho(z) \end{cases}$$
Perturbation de pression dynamique

Figure : Malardel

Résolution numérique d'une équation elliptique en P' :

$$\nabla^2 P' = -\frac{\partial}{\partial z} \left(\rho \left[u \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial z} \right] \right) + \frac{\partial (\rho B_z)}{\partial z}$$

Perturbation de pression liée à la flottabilité

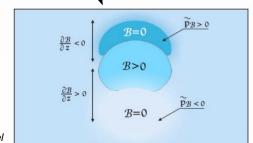


Figure : Malardel

« l'équation de la vitesse verticale » dans PCMT

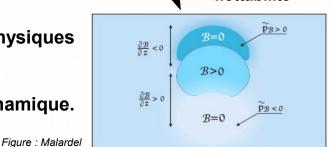
Équation pronostique actuelle de la vitesse verticale sous-maille :

$$\frac{\partial \omega}{\partial t} = -\omega \frac{\partial \omega}{\partial p} + B_p \left(+ \left(\frac{\epsilon_t}{\rho} + \epsilon_0 + K_d \right) \omega^2 \right)$$

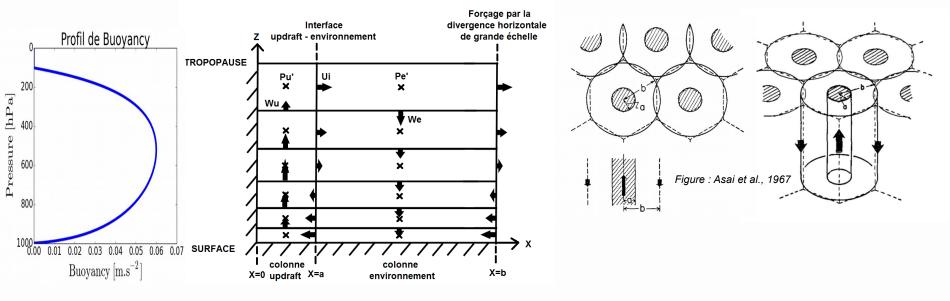
Équations pronostiques futures de la vitesse verticale sousmaille:

$$\begin{cases} \frac{\partial w}{\partial t} = -\left(u\frac{\partial w}{\partial x} + w\frac{\partial w}{\partial z}\right) + B_z\left(-\frac{1}{\rho}\frac{\partial P'}{\partial z}\right) \\ \frac{\partial u}{\partial t} = \left(-\frac{1}{\rho}\frac{\partial P'}{\partial x}\right) \\ \rho\frac{\partial u}{\partial x} + \frac{\partial \rho w}{\partial z} = 0 \\ \rho = \rho(z) \end{cases}$$
Perturbation de pression dynamique

Figure : Malardel


Résolution numérique d'une équation elliptique en P':

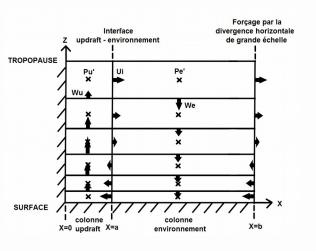
$$\nabla^2 P' = -\frac{\partial}{\partial z} \left(\rho \left[u \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial z} \right] \right) + \frac{\partial (\rho B_z)}{\partial z}$$


Perturbation de pression liée à la flottabilité

Avantage : permet de mieux prendre en compte certains processus physiques (advection, frein de pression) qui contrôlent la vitesse verticale.

Pour le moment : pas de couplage entre la dynamique et la thermodynamique.

Configuration de ce modèle à 2 colonnes



- 2 géométries différentes : 2D SLAB et AXIAL
- Représentation de la convection à travers un modèle non hydrostatique à 2 colonnes
- Choix d'une grille C en coordonnées z
- 5 équations à discrétiser :
 - 2 équations d'évolution pour wu et we
 - 1 équation d'évolution pour u à l'interface entre les 2 colonnes
 - 2 équations de continuité pour chaque colonne
- ⇒ inversion d'une matrice tridiagonale pour trouver l'anomalie de pression horizontale
- Introduction de facteurs de forme pour le wu et we :
- ⇒ modification non négligeable des coefficients dans le terme d'advection suivant l'hypothèse de la forme de wu (top hat, linéaire, parabolique)

Conclusion et perspective sur le travail de thèse

Conclusion

- Permet de mieux représenter le profil de vitesse verticale
- Fermeture du schéma possible : nombre de cellules
- Limite : s'il n'y a pas de flottabilité positive dès les premiers niveaux ⇒ problème du déclenchement
- Implémentation dans le code PCMT en cours
- Création de nombreux diagnostics pour bien analyser le comportement de ce modèle simple. Utilisation d'un cas 1D de convection océanique idéalisé (Derbyshire et al., 2004)

Perspectives

- Introduction de termes sources liés à différents processus (turbulence sous-maille, relief sous-maille,...)
- Développement d'un modèle à 3 colonnes (updraft, downdraft, environnement) Nécessité de coupler la dynamique avec la thermodynamique (besoin d'une équation pronostique pour la flottabilité sous maille)
- Si le cas 1D est concluant, évaluation sur des cas 3D couplés (AMMA, CINDY DYNAMO,...)

Équations discrétisées du modèle

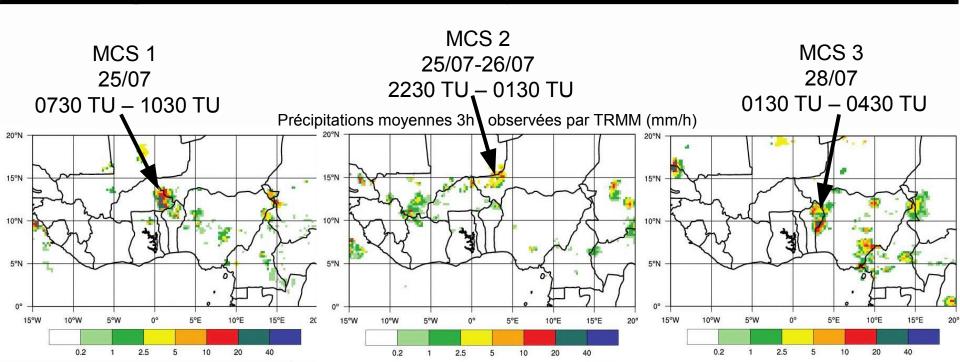
Les 5 équations discrétisées :

$$\begin{cases} u_{i,k}^{n+1} = u_{i,k}^n - \frac{2\Delta t}{\rho_k} \left(\frac{P_{e,k}' - P_{u,k}'}{b} \right) \\ w_{u,k}^{n+1} = w_{u,k}^n - \frac{\Delta t}{a} \int_0^a (u \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial z}) dx + \Delta t B_k - \frac{\Delta t}{\overline{\rho_k}} \left(\frac{P_{u,k}' - P_{u,k+1}'}{\Delta^M z(k+1)} \right) \\ w_{e,k}^{n+1} = w_{ue,k}^n - \frac{\Delta t}{b-a} \int_a^b (u \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial z}) dx - \frac{\Delta t}{\overline{\rho_k}} \left(\frac{P_{e,k}' - P_{e,k+1}'}{\Delta^M z(k+1)} \right) \\ \rho_k \frac{u_{i,k}^n}{a} + \frac{\overline{\rho_{k-1}} w_{u,k-1}^n - \overline{\rho_k} w_{u,k}^n}{\Delta^F z(k)} = 0 \\ \rho_k \frac{u_{e,k}^n - u_{i,k}^n}{b-a} + \frac{\overline{\rho_{k-1}} w_{e,k-1}^n - \overline{\rho_k} w_{e,k}^n}{\Delta^F z(k)} = 0 \end{cases}$$

Introduction des facteurs de forme :

$$\begin{cases} u_{iu,k}^{F,n}(x) = u_{i,k}^n \times g_u(x) \ avec \ g_u(0) = 0 \\ w_{u,k}^{F,n}(x) = w_{u,k}^n \times f_u(x) \ avec \ f_u(a) = 0 \end{cases} \qquad \begin{cases} u_{ie,k}^{F,n}(x) = u_{i,k}^n \times g_e(x) \ avec \ g_e(a) = g_u(a) \\ w_{e,k}^{F,n}(x) = w_{e,k}^n \times f_e(x) \ avec \ f_e(a) = f_u(a) = 0 \end{cases}$$

Les termes d'advections dépendent de la forme de w supposée

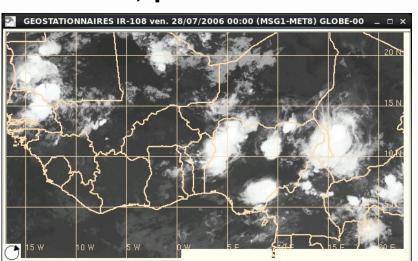

$$A_{u,k} = -\frac{u_{i,k}^n w_{u,k}^n}{a} \int_0^a \left(\frac{1}{a} \int_0^x f_u(t) dt\right) \frac{df_u(x)}{dx} dx - w_{u,k}^n \frac{w_{u,k-1}^n - w_{u,k+1}^n}{\Delta^F z(k) + \Delta^F z(k+1)} \frac{1}{a} \int_0^a f_u(x)^2 dx$$

$$A_{e,k} = -\frac{u_{i,k}^n w_{e,k}^n}{b-a} f_e(b) - \frac{w_{e,k}^n (u_{e,k}^n - u_{i,k}^n)}{b-a} \int_a^b \left(\frac{1}{b-a} \int_a^x f_e(t) dt\right) \frac{df_e(x)}{dx} dx - w_{e,k}^n \frac{w_{e,k-1}^n - w_{e,k+1}^n}{\Delta^F z(k) + \Delta^F z(k+1)} \frac{1}{b-a} \int_a^b f_e(x)^2 dx$$
(23)

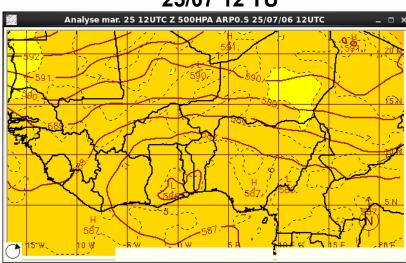
Description du cas d'étude

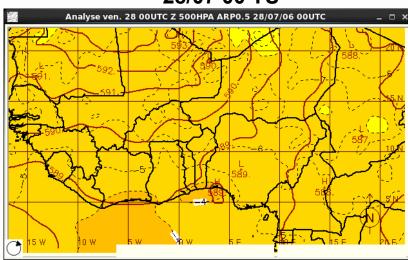

Utilisation de données TRMM 3B42 pour repérer les MCS.

	Trajectoire	Période de vie
MCS 1	12°N-5°E ==> 13°N-7°W	De 00 TU le 25 à 00 TU le 26
MCS 2	15°N-6°E ==> 14°N-1°W	De 20 TU le 25 à 05 TU le 26
MCS 3	9°N-8°E ==> 7°N-7°W	De 13 TU le 27 à 00 TU le 29

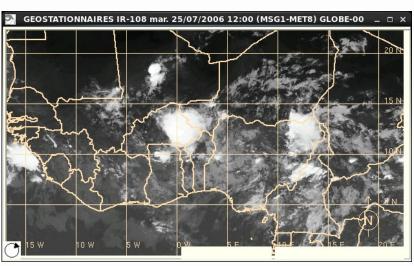


Analyse de la grande échelle

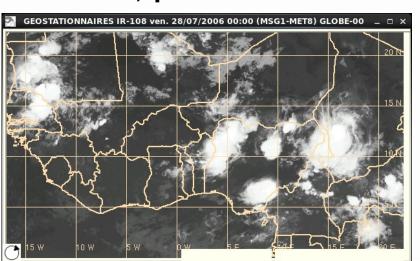

IR 10,8μm 25/07 12 TU


IR 10,8µm 28/07 00 TU

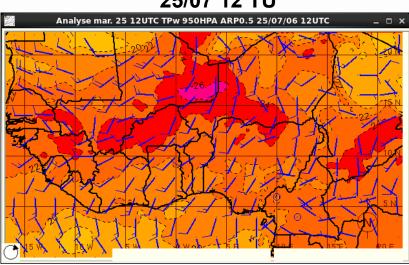
ZT 500 25/07 12 TU

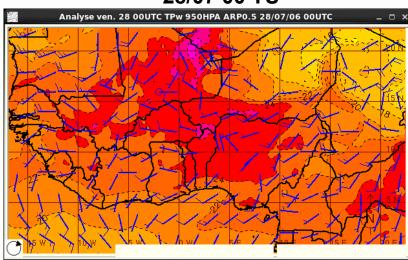


ZT 500 28/07 00 TU

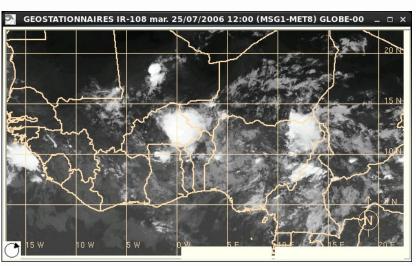


Analyse de la grande échelle


IR 10,8µm 25/07 12 TU

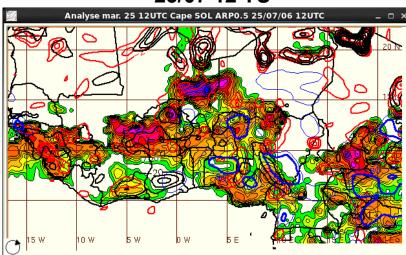

IR 10,8µm 28/07 00 TU

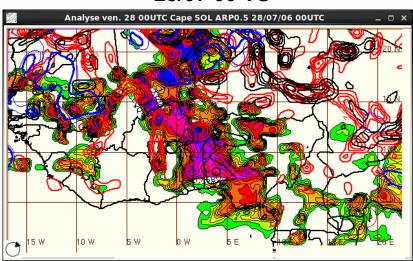
TPW850+V950 25/07 12 TU

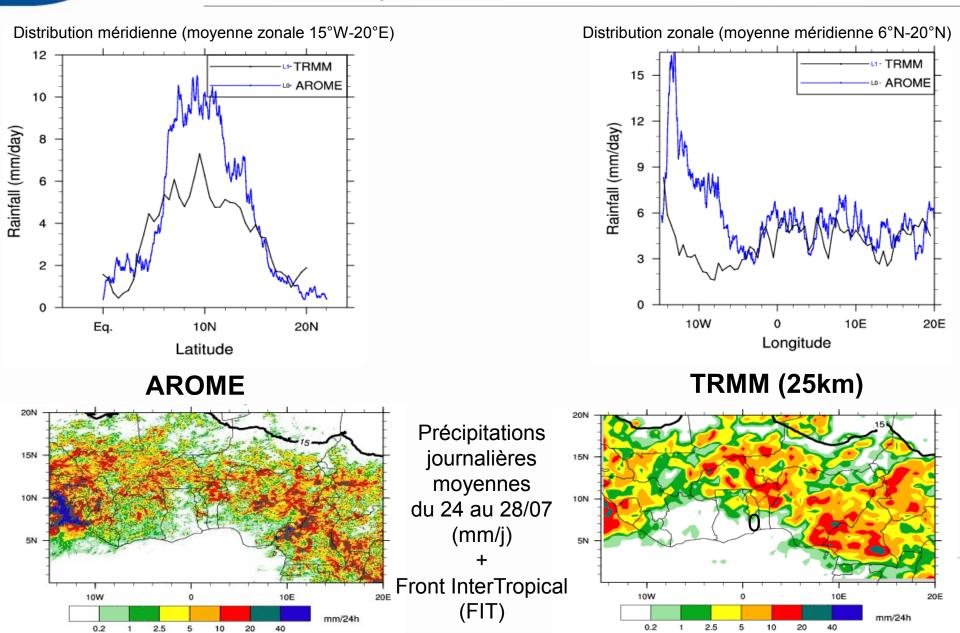


TPW850+V950 28/07 00 TU

Analyse de la grande échelle


IR 10,8µm 25/07 12 TU


IR 10,8µm 28/07 00 TU

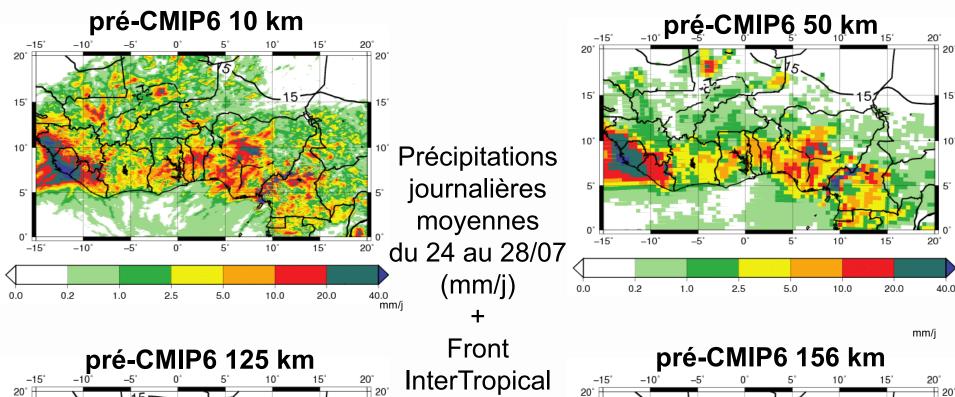

CAPE+div950(r)+VV700(n)+Hu500(b) 25/07 12 TU

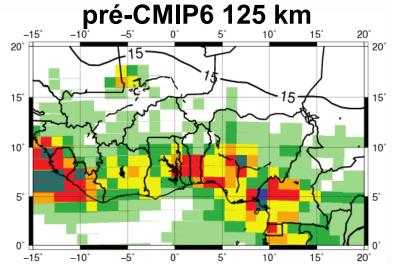
CAPE+div950(r)+VV700(n)+Hu500(b) 28/07 00 TU

Comparaison AROME-TRMM

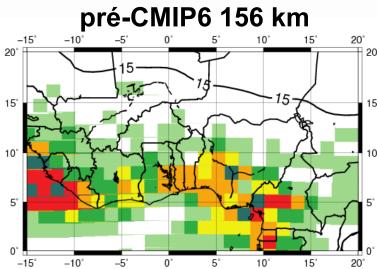
Caractéristiques des trois physiques

Paramétrisation	CMIP5	PNT	pré-CMIP6
Convection peu profonde	Pas de schéma spécifique, traitée en partie via les PDF humides	Schéma en flux de masse de Bechtold et al. (2001)	Schéma PCMT (Piriou et al. (2007), Guérémy (2011))
Convection profonde	Schéma de Bougeault (1985)	Schéma de Bougeault (1985) avec modifications	Schéma PCMT (Piriou et al. (2007), Guérémy (2011))
Turbulence	TKE diagnostique (Ricard et Royer (1993))	Equation pronostique de la TKE (Cuxart et al. (2000))	Equation pronostique de la TKE (Cuxart et al. (2000))
Longueur de mélange	Profil quadratique de Lenderink et Holtslag (2004)	Longueur de mélange de Bougeault et Lacarrère (1989)	Longueur de mélange de Bougeault et Lacarrère (1989)
Nuage	PDF de Bougeault (1981)	PDF de Bougeault (1981)	PDF de Bougeault (1981)
Microphysique	Diagnostique de Smith (1990)	Schéma pronostique de Lopez (2002)	Schéma pronostique de Lopez (2002)
Rayonnement	Schéma du CEP (Fouquart et Bonnel (1980) pour les courtes longueurs d'ondes et Mlawer et al. (1997) pour les grandes longueurs d'ondes)	Schéma du CEP (Fouquart et Bonnel (1980) pour les courtes longueurs d'ondes et Mlawer et al. (1997) pour les grandes longueurs d'ondes)	Schéma du CEP (Fouquart et Bonnel (1980) pour les courtes longueurs d'ondes et Mlawer et al. (1997) pour les grandes longueurs d'ondes)
Surface	ISBA	ISBA	ISBA et SURFEX

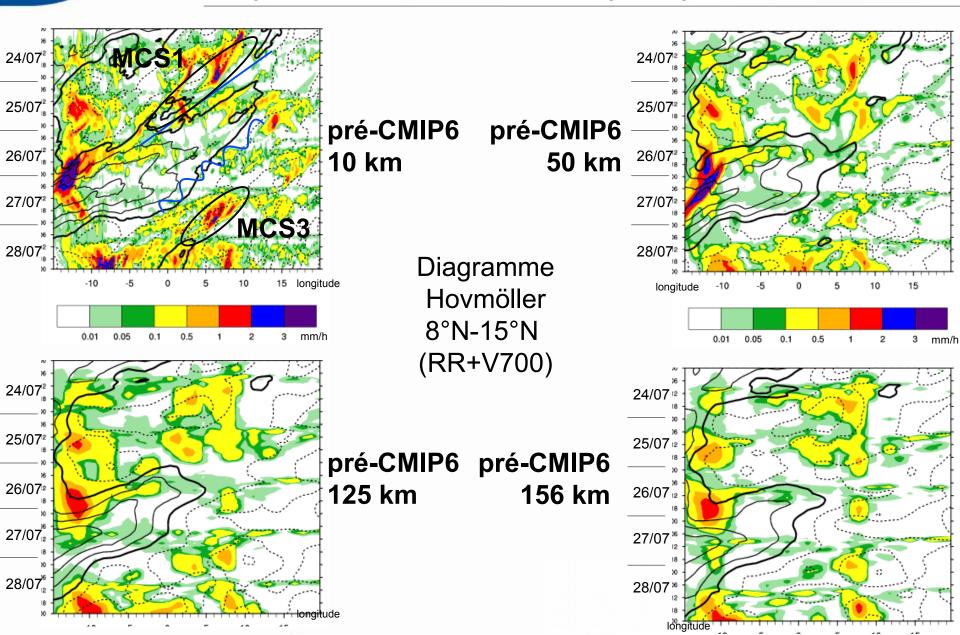



Caractéristiques des trois schémas de convection

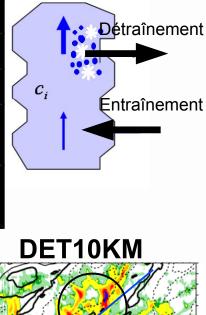
Schémas de convection	CMIP5	PNT	pré-CMIP6	
Fermeture de la convection profonde	Advection de grande échelle + convergence d'humidité = précipitation convective + détraînement	Même que Bougeault CMIP5	Relaxation de la CAPE	
Entraînement et détraînement	Décroissance exponentielle avec l'altitude de l'entraînement et détraînement déduit à partir de la conservation d'énergie statique humide dans le nuage	ntraînement et détraînement déduit à partir la conservation d'énergie statique humide		
Condition de déclenchement	Convergence d'humidité + niveau flottable	Même que Bougeault avec une épaisseur minimale de nuage de 3km	Equation pronostique pour la vitesse verticale convective. Déclenchement si w>0	
Courant descendants	Non	Oui	Oui	
Fermeture de la convection peu profonde	Pas de schéma spécifique	Relaxation de la CAPE (schéma de Kain-Fritsh- Bechtold)	Relaxation de la CAPE	

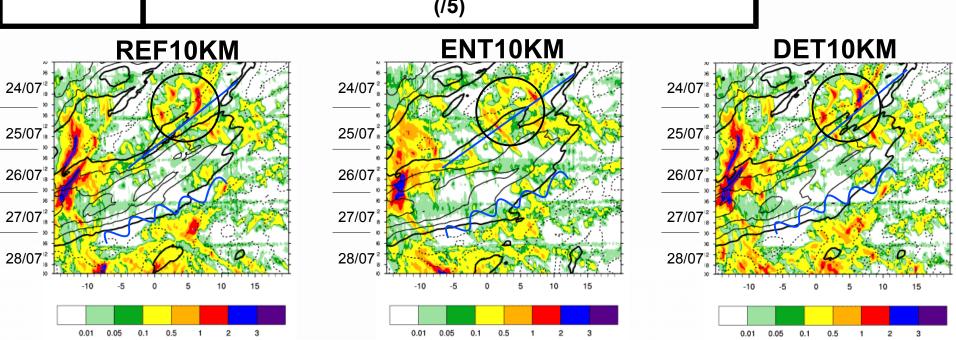


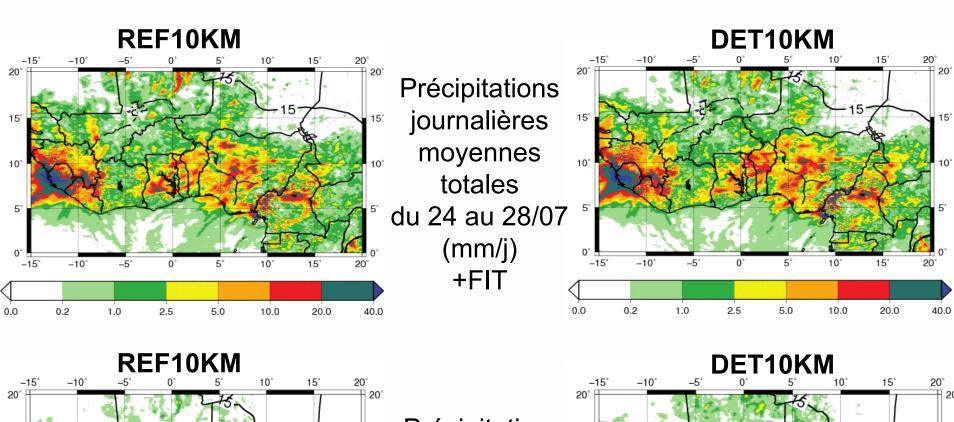
Comparaison des résolutions pour pré-CMIP6

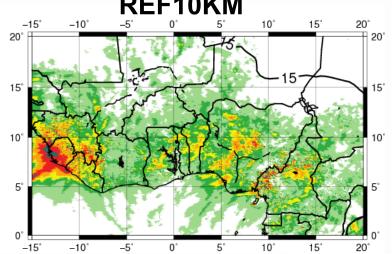


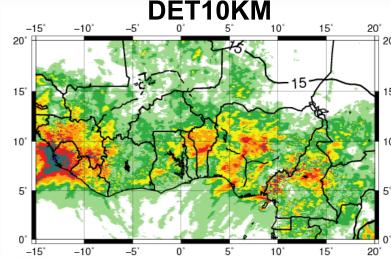
(FIT)



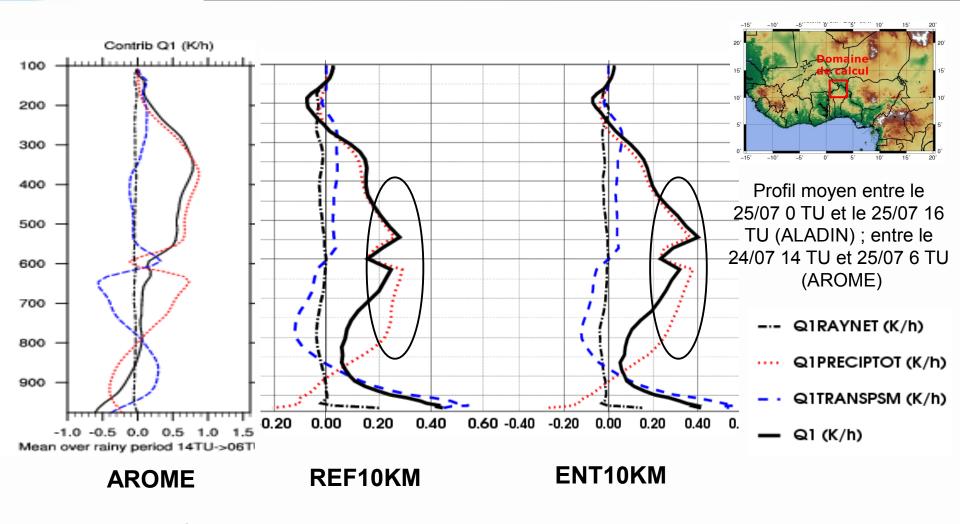

Comparaison des résolutions pour pré-CMIP6


Intensification de la convection et des précipitations sur le Sahel? Présentation des tests de sensibilité

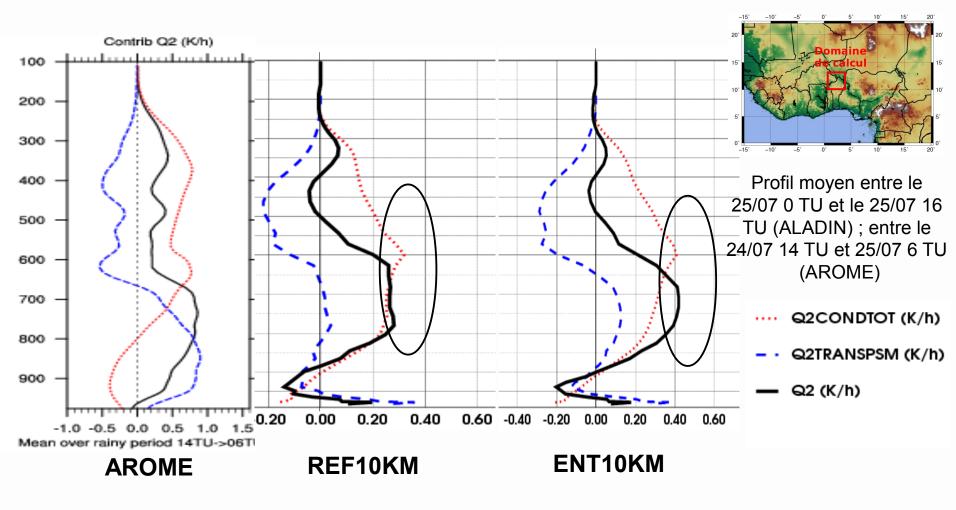

				_
Nom des simulations	Description			
REF10KM	Simulation de référence			↑. • Détraîne
ENT10KM	Diminution de l'entraînement (/2)			c_i
CIN10KM	Activation d'un niveau seuil			
FSM10KM	Activation de la variabilité sous-maille du relief et de l'instabilité convective de surface dans les flux thermodynamiques			Entraîne
DET10KM	Réduction du détraînement des précipitations convectives (/5)			
RI	EF10KM	ENT10KM		DET10KM
24/07		24/07	24/07	
25/07 ¹²		25/07	25/0718	Jan



Diminution du détraînement des précipitations convectives : impact sur les précipitations



Précipitations convectives moyennes (mm/j) +FIT



Diminution de l'entraînement turbulent : impact sur les profils de Q1 moyens (MCS1)

Diminution de l'entraînement turbulent : impact sur les profils de Q2 moyens (MCS1)

