World Weather Research Programme Strategic plan 2016-2023

Estelle de Coning, Paolo Ruti, Julia Keller World Weather Research Division Sarah Jones, Chair Scientific Steering Committee

WMO OMM

World Meteorological Organization Organisation météorologique mondiale

Overarching goals

- Towards Environmental Prediction, integrating modeling components (hydrology, sea-ice, ocean, atmospheric composition) to improve forecasting systems
 → Ex. Polar Prediction Project
- Towards a seamless predictive capability, developing a unified approach to advance environmental prediction from minutes to months and seasons, from global to local, for different users → Ex. Sub-seasonal to Seasonal Prediction Project
- <u>Towards impacts forecasting</u>, building community resilience in the face of increasing vulnerability to extreme weather events, through a better understanding of communication and decisionmaking processes
 - → Ex. High-Impact Weather Project

WWRP Societal Challenges

1. WWRP implementation plan 2016-2023 Urbanization

- Key research issues:
 - Development of model capabilities that consider unique urban aspects (such as architecture etc.) and make <u>use of</u> <u>high-density (crowd sourced) data which are available in</u> <u>cities (phones, cars etc);</u>
 - An interdisciplinary integrated urban services approach that considers societal challenges, service requirements, crowd behaviour, messaging and trusted sources of information.

2. WWRP implementation plan 2016-2023 High Impact weather

- Key research issues are:
 - Seamless approach to understand and model extreme events, which also makes use of <u>new and non-traditional</u> <u>observations</u> and considers aspects of global change;
 - Refined understanding of the socio-economic implications and decision processes taking into account vulnerabilities and risks;
 - Integrated approaches to extend predictions from physical impacts to effects on social and economic systems, considering stakeholders' needs.

3. WWRP implementation plan 2016-2023 Water Cycle

- Key research issues are:
 - Seamless approach to understand and model the water
 cycle and its processes, including the correct precipitation processes;
 - Improved consideration of socio-economic needs and benefits, and decision processes related to the water cycle, enabling refined communication procedures and services;
 - <u>Development and optimal application of modelling and</u> <u>data assimilation techniques.</u>

4. WWRP implementation plan 2016-2023 New/Emerging technologies

- Key issues:
 - Exploitation of new methodologies and sources for observations, to complement existing capabilities, assess data quality and relative contributions of observing systems;
 - Exploitation of modelling and <u>data assimilation</u>
 <u>capabilities and methodologies</u>, optimum usage of computing power and communications bandwidth;
 - Adaptation to evolving communication technologies, while continuing service to traditional means of obtaining information, which may become important in the event of disasters.

WWRP implementation plan 2016-2023

WWRP implementation plan 2016-2023

For each Societal Challenge there are a number of Action Areas, and for each of those a number of overall WWRP programmatic goals, which are contributed to by activities involving one or more of WWRP's projects and **working groups**.

WWRP implementation plan 2016-2023

			HIWeather	PPP	S2S	AvRDF	Π	DAOS	WGFVR	NMR	PDEF	SDS-WAS	SERA	WGNE	WGTMR	ETWM
High Impact Weather	A1	Address Limitations														
	A2	Uncertainty														
	A3	Fully Coupled														
	A4	Applications														
	A5	Verification														
	A6	Attribution														
Water	A7	Integrated Water Cycle														
	A8	New Observations														
	A9	Precipitation														
	A10	lydrological Uncertainty														
Urban	A11	Understand Needs														
	A12	bservations & Processes														
	A13	Urban Prediction														
Evolving Technologies	A14	Advanced Methods														
	A15	Support Facilities														
	A16	Tools														
	A17	New Observations														
	A18	Future GOS														

For consideration in DA plans for the future

- 1. How can <u>new/emerging data sources</u> be used for DA (especially in data sparse regions)?
- How can field campaigns/RDP/FDP be used to <u>highlight</u> the work of DA community (East Africa, Nawdex, etc)?
- 3. Are closer links needed with Nowcasting and Mesoscale Research WG to address shorter time scales and higher resolution?
- 4. What can DA community do which is to the benefit of all WMO members (aside from good science)?
- 5. DA <u>guidelines</u> for developed and developing countries?
- 6. <u>Concrete actions</u> from this workshop to apply DA in basic and complex systems?

