

Is interface solver a way forward for complex coupled systems?

Sergey Frolov

With help from: Craig Bishop; Clark Rowley; Charlie Barron; Ben Ruston; Doug Allan and many others at NRL

Coupled DA workshop, France, 2016

1

Managing complexity is a key challenge for CDA

- Interface solver (this talk) allows to contain scientific and organizational complexity
- **LETLM** (talk later today) allows to contain software development and maintenance costs.
- Standardized software libraries and tools (something we should be talking about) is what makes execution of these complex suits possible.

The coupled DA opportunity

Challenge of the coupled DA

Interface solver: Does it have to be so difficult?

Does it have to be so difficult? New idea: Interface solver

Outline

- Motivation
- Localization for coupled ensemble covariance
- Results in a mesoscale system
- Progress to-date on the global Navy model.

Localization of coupled ensemble covariances

Challenge:

• Correlation scales wary wildly between ocean and atmosphere

Solution:

• Modify the Gaspari-Cohn distance function

$$dist(obs_{atm} - obs_{oce}) = \sqrt{\left(\frac{x_A - x_O}{0.5 \cdot (L_{x|A} + L_{x|O})}\right)^2 + \left(\frac{y_A - y_O}{0.5 \cdot (L_{y|A} + L_{y|O})}\right)^2 + \dots} + \left(\frac{z_A}{L_{z|A}} - \frac{z_O}{L_{z|O}}\right)^2 + \left(\frac{t_A - t_O}{0.5 \cdot (L_{t|A} + L_{t|O})}\right)^2$$

Coupled localization

Coupled localization

Summary of results:

- Twin experiments (next slides) show that it is beneficial to use different localization scales in the ocean and atmospheric
- However, when the ocean atmospheric scales differ considerably, the proposed function is no longer positive definite
- To maintain PD of the localization, it might be necessary to localize the square root of the ensemble covariance

Outline

- Motivation
- Localization for coupled ensemble covariance
- Results in a mesoscale system
- Progress to-date on the global Navy model.

Can interface solver give the same result as exhaustive solver?

Forward model:

- Coupled, nested COAMPS/NCOM
- Atm. resolution 42 km
- Oce. resolution 12 km
- Coupling every 6 min.

Ensemble system:

- 20 members
- Driven by global atm. ensemble,
- Augmented by ET cycling

Observations:

- Twin experiment based on real obs. locations
- DA system:
 - Hybrid-3DVAR

Can interface solver give the same result as exhaustive solver?

(a) Experiment setup (ocean-centric example)

Objective:

Determine how fast does interface solver converges to exhaustive solution?

Can interface solver give same result as exhaustive solver?

(a) Experiment setup (ocean-centric example)

Convergence of interface and exhaustive solvers

Interface solver converges quickly to exhaustive solution Exhaustive

Solver configuration	Optimal ocean scales	Optimal atmospheric scales
Exhaustive	L =300 km	L = 500 km
Ocean + atm. bnd. layer	L = 300 km	L = 400 km
Atmosphere + ocean. bnd. layer	L = 500 km	L = 900 km

Example of coupling between SST and atm. temperature

10 m air temp. increment **SST** increment Correction 35 Perfect 30 -10 **Uncoupled DA** 1.5 0.5 -0.5 -10 Interface DA -10

Results:

-1

40 0

40 0

40 20

- SST increments are similar between all three experiments
- Positive impact of SST increments on the low atmosphere is clear along the coast of Israel and Portugal

Outline

- Motivation
- Localization for coupled ensemble covariance
- Results in a mesoscale system
- Progress to-date on the global Navy model.
 - System design
 - Impact of SST-sensitive channels
 - Towards a global ocean EnVar solver
 - Opportunities in ice-covered regions

Existing coupled system

Existing coupled system

SST chalenge

Plans for the coupled system (2020- 2022)

Outline

- Motivation
- Localization for coupled ensemble covariance
- Results in a mesoscale system
- Progress to-date on the global Navy model.
 - System design
 - Impact of SST-sensitive channels
 - Towards a global ocean EnVar solver
 - Opportunities in ice-covered regions

Need for NAVDAS-AR-SST

- Satellite radiances with sensitivity to the ocean surface are currently ignored by atm. H4DVAR
- When assimilated, innovation show strong diurnal signal due to un-modeled SST variability

NAVDAS-AR-SST: implementation details

$$x^{coupled} = [x^{atm}; x^{sst}]$$
Coupled state with SST
$$y^{radiance} = \mathbf{H}^{crtm-jacobian} x^{coupled} = \begin{bmatrix} \mathbf{J}^{atm} \\ \mathbf{J}^{sst} \end{bmatrix} \begin{bmatrix} x^{atm} \\ x^{sst} \end{bmatrix}$$
Observations are coupled using
CRTM Jacobian
$$\mathbf{P}^{coupled} = \begin{bmatrix} \mathbf{P}^{AA} & \mathbf{P}^{AO} \\ \mathbf{P}^{OA} & \mathbf{P}^{OO} \end{bmatrix} \approx \begin{bmatrix} \mathbf{P}^{AA} & 0 \\ 0 & \sigma^{2}\mathbf{I} \end{bmatrix}$$
Simple approximations are used for
coupled covariance and TLM.

Currently SST is implemented as a "sink" variable

- $\mathbf{M}^{AO} = \mathbf{M}^{OA} = 0$; $\mathbf{M}^{OO} = \mathbf{I}$ and $\mathbf{P}^{AO} = \mathbf{P}^{OA} = 0$; $\mathbf{P}^{OO} = \sigma^2 \mathbf{I}$

• In future, we plan to use coupled ensembles to approximate coupled covariances and TLMs

Results

hPz

Uncoupled DA

Coupled DA

innovations; bias corrected innovation mean; innovation bias

Innovation statistics

Run name	Reference	New channels	Diurnal SST	SST state variable
Valid. channels				
Old channels	0.50	0.48	0.48	0.48
New channels	NA	0.49	0.46	0.47
Water vapor	1.23	1.16	1.15	1.15
channels				
Tropospheric	0.45	0.46	0.45	0.45
channels				

- Inclusion of low peaking channels is beneficial to non-assimilated water-vapor channels
- Inclusion of the diurnal SST model and SST state variable helps to tie-down the errors further

Outline

- Motivation
- Localization for coupled ensemble covariance
- Results in a mesoscale system
- Progress to-date on the global Navy model.
 - System design
 - Impact of SST-sensitive channels
 - Towards a global ocean EnVar solver
 - Opportunities in ice-covered regions

Towards global ocean EnVar (very preliminary results)

Surface salinity correction 3DVAR

Surface velocity correction 3DVAR

Surface salinity correction EnVar

Surface velocity correction EnVar

- Snapshot of the analysis increment over equatorial Pacific
- EnVar solver with 20 perturbed-obs. members
- Ensemble (and hybrid) show more realistic-looking corrections to the salinity and velocity fields
- Further testing is needed to characterize error statistics

Spread of Surface Pressure From 40 Similar Forecasts

observations in-use by current coupled system

Spread of Surface Pressure From 40 Similar Forecasts

In red are ice motion vectors

Summary

Interface solver:

- A mathematically-principled way to contain the scientific, computational, and organizational costs of coupled systems
- Very encouraging results in the mesoscale system
- Some preliminary results in the global system

End