Improving coupled model solution mathematical consistency through data assimilation.

Toulouse, 19th of October 2016

Coupled Data Assimilation Workshop

4 D N 4 B N 4 B N

OA coupling is a complex matter with many sources of uncertainties

- time/space non-confomity
- interfaces may actually not be represented by any component
- multi physics with different characteristics.
- highly parameterised interface (Bulk formulae)
- coupling methods

Some of theses uncertainties are unavoidable, some others are linked to the way we implement things.

Coupled DA is an opportunity to account for or reduce them

^{• ...}

Coupled modelling systems

- K_m parameterization in the boundary layers
- $F_{oa} = (\tau, Q_{net})$ is the interface flux

At the Interface Γ : $\mathcal{G}_o u_o = \mathcal{G}_a u_a$ $\mathcal{F}_a u_a = \mathcal{F}_o u_o$

• • • • • • • • • • • • •

Coupling methods Usual approaches

- Synchronous method.
 - Aliasing errors
 - Synchronicity issues
 - Physics-dynamics inconsistency error
- Possible solutions
 - Monolithic approach (Type 1 coupling in P.Laloyaux's nomenclature)
 - Iterative method to solve the coupling problem

• Asynchronous method:

< 17 →

Does not solve the original problem

Coupling methods Schwarz Waveform Relaxation (AKA Global in time Schwarz method)

Considering :

- $u_0 \in H^1(\Omega_a \cup \Omega_o)$ the initial condition
- k the iteration number
- $u_a^0(0,t)$ the first-guess

The SWR algorithm reads :

$$\begin{cases} \mathcal{L}_{o}u_{o}^{k} = f_{o} & \text{on } \Omega_{o} \times T_{i} \\ u_{o}^{k}(z,0) = u_{0}(z) & z \in \Omega_{o} \\ \mathcal{G}_{o}u_{o}^{k} = \mathcal{G}_{a}u_{a}^{k} & \text{on } \Gamma \times T_{i} \end{cases} \begin{cases} \mathcal{L}_{a}u_{a}^{k} = f_{a} & \text{on } \Omega_{a} \times T_{i} \\ u_{a}^{k}(z,0) = u_{0}(z) & z \in \Omega_{a} \\ \mathcal{F}_{a}u_{a}^{k} = \mathcal{F}_{o}u_{o}^{k-1} & \text{on } \Gamma \times T_{i} \end{cases} \\ T_{i} = [t_{i}; t_{i+1}] \end{cases}$$

• At convergence, it provides a flux consistent solution : $\mathcal{F}_a u_a = \mathcal{F}_o u_o$ and $\mathcal{G}_o u_o = \mathcal{G}_a u_a$ on $\Gamma \times T_i$

where

Coupling methods Why does it matter

Hurricane Erica's trajectory and ensemble spread

18 members of WRF/ROMS, generated through perturbations of initial conditions and coupling frequency (lemarié et al. 2014))

A D > A A

Main drawbacks :

- This is an iterative method
- Convergence speed greatly depends on \mathcal{F}_d , \mathcal{G}_d and $u^0_a(0,t)$ (d = a, o)

Advantages :

- This is a non-intrusive coupling method
- At convergence, it provides a strongly coupled solution

Starting point of Rémi's PhD, in the framework of a variational system

- Can we improve the boundary conditions to accelerate the SWR convergence?
- Take benefit of the minimisation iterations for the SWR ones

Fully Iterative Method (FIM)

- $\mathbf{x}_0 = u_0(z), \; z \in \Omega = \Omega_a \cup \Omega_o$ is the controlled state vector
- $\mathbf{x}^{\text{cvg}} = (u_a^{k_{\text{cvg}}}, u_o^{k_{\text{cvg}}})^T$ is the converge solution of the SWR algorithm : k_{cvg} iterations
- The first-guess u_a^0 in the SWR algorithm is updated after each minimisation iteration

$$J_{FIM}(\mathbf{x}_{0}) = J^{b}(\mathbf{x}_{0}) + \int_{t_{i}}^{t_{i+1}} \left\langle \mathbf{y} - H(\mathbf{x}^{\text{cvg}}), \mathbf{R}^{-1}(\mathbf{y} - H(\mathbf{x}^{\text{cvg}})) \right\rangle_{\Omega} dt$$

- The solution provided is strongly fully insanely coupled
- It requires the adjoint of the coupling
- It possibly requires a large number of Schwarz iterations

イロト 不得下 イヨト イヨト

Truncated iterative method (TIM)

•
$$\mathbf{x}_0 = (u_0(z), \underline{u}_o^0(0, t))^T, \ z \in \Omega \setminus \Gamma$$

- The Schwarz iterations are truncated at $k_{max} < k_{cvg}$ iterations
- $\mathbf{x}^{\max} = (u_a^{\mathbf{k}_{\max}}, u_o^{\mathbf{k}_{\max}})^T$
- Extended cost function :

$$\begin{split} J^s &= \alpha_{\mathcal{F}} \|\mathcal{F}_a u_a^{k_{\max}}(0,t) - \mathcal{F}_o u_o^{k_{\max}}(0,t) \|_{\mathcal{T}_i}^2 + \alpha_{\mathcal{G}} \|\mathcal{G}_a u_a^{k_{\max}}(0,t) - \mathcal{G}_o u_o^{k_{\max}}(0,t) \|_{\mathcal{T}_i}^2 \\ \text{with } \|a\|_{\Sigma}^2 &= \langle a, a \rangle_{\Sigma} \end{split}$$

$$J_{TIM}(\mathbf{x}_{0}) = J^{b}(\mathbf{x}_{0}) + \int_{t_{i}}^{t_{i+1}} \left\langle \mathbf{y} - H(\mathbf{x}^{\max}), \mathbf{R}^{-1}(\mathbf{y} - H(\mathbf{x}^{\max})) \right\rangle_{\Omega} dt + \boxed{J^{s}}$$

- The solution provided is quasi-strongly coupled
- It requires the adjoint of the coupling
- It requires fewer number of Schwarz iterations than the FIM

イロト イポト イヨト イヨト

Weakly Interfaced Models (WIM)

•
$$\mathbf{x}_0 = (\mathbf{x}_{0,a}, \mathbf{x}_{0,o})^T$$
 with $\mathbf{x}_{0,d} = (u_0|_{z \in \Omega_d}, u_d^0(0, t))$

- The direct coupling between both models is suppressed
- Models are coupled during the assimilation process

$$J_{WIM}(\mathbf{x}_0) = \left\{ \sum_{d=a,o} (J^b(\mathbf{x}_{0,d}) + J^o(\mathbf{x}_{0,d}))
ight\} + J^s$$

- The solution provided is weakly coupled (as coupling is a weak constraint)
- It requires only the adjoints of the uncoupled models
- There is no coupling iterations

Algo	Control vector	# of	extended	Adjoint of	Coupling
		coupling	cost	the	
		iterations	function	coupling	
FIM	$(u_0(z))$	$k_{ m cvg}$	no	yes	strong
TIM	$(u_0(z), u_o^0)^T$	k_{\max}	possibly	yes	\sim strong
WIM	$(u_0(z), u_a^0, u_o^0)^T$	1	yes	no	weak

Table: Overview of the properties of the coupled variational DA methods described

イロト イポト イヨト イヨト

Previous algorithms are applied on a 1D linear diffusion problem. Let us consider (d = a, o):

- $\mathcal{L}_d = \partial_t + \nu_d \partial_z^2$
- $\nu_{a} \neq \nu_{o}$ the diffusion coefficients
- $\mathcal{G}_d = \nu_d \partial_z$ and $\mathcal{F}_d = \mathrm{Id}$ the interface operators on Γ
- f_d the second member such that the analytical solution is $u_d^{\star}(z,t) = \frac{U_0}{4} e^{-\frac{|z|}{\alpha_d}} \left\{ 3 + \cos^2\left(\frac{3\pi t}{\tau}\right) \right\}$ on $\Omega_d \times T_i$

Application to a 1D diffusion problem

Our simple coupled system : two coupled 1D diffusion equations - results

Algo	$\alpha_{\mathcal{F}}$	$\alpha_{\mathcal{G}}$	k _{max}	# of	# of	Interface	RMSE in
				minimisation	models	imbalance	$^{\circ}\mathrm{C}$
				iterations	runs	indicator	
FIM	-	-	$k_{\rm cvg}$	58	1169	$3.69 \ 10^{-12}$	0.220
TIM	0	-	k _{cvg}	48	2016	$5.63 \ 10^{-12}$	0.220
TIM	0	-	5	245	1225	$2.91 \ 10^{-2}$	0.216
TIM	0	-	2	1518	3036	3.77	0.272
TIM	0.01	-	2	425	850	$9.89 \ 10^{-7}$	0.217
TIM	0.01	-	1	344	344	8.38 10 ⁻⁷	0.215
WIM	0.01	40	1	2957	2957	$1.40 \ 10^{-4}$	0.231
WIM	0.001	4	1	268	268	9.38 10 ⁻³	0.240
WIM	0.0001	0.4	1	742	742	$3.29 \ 10^{-1}$	0.327
Uncoupled	0	0	1	101	101	29.0	1.717

2

・ロト ・回ト ・ヨト ・ヨト

Application to a 1D diffusion problem

Our simple coupled system : two coupled 1D diffusion equations - Computational cost vs accuracy

< ロ > < 同 > < 三 > < 三

Final comments

It is difficult to draw a clear conclusion from such a simplistic testcase but

- The way models are coupled should not be overlooked
- FIM and even TIM are probably too extreme
- but controlling (as we saw this morning) and/or penalising the interface mismatch could be a step toward stronger coupling

More work for Rémi:

- more in depth theoretical study on convergence
- Apply these algorithms to a more realistic coupled SCM (Ocean/ABL, currently being implemented within OOPS)
- look into optimized interface conditions for SWR

In parallel:

• extend this work to ensemble smoother