Improving coupled model solution mathematical consistency through data
assimilation.
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B
Coupled Data Asimilation: an opportunity

OA coupling is a complex matter with many sources of uncertainties

time/space non-confomity

interfaces may actually not be represented by any component

multi physics with different characteristics.

highly parameterised interface (Bulk formulae)
@ coupling methods
o ...

Some of theses uncertainties are unavoidable, some others are linked to the way we
implement things.
Coupled DA is an opportunity to account for or reduce them
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Coupled modelling systems
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Coupling methods

Usual approaches

SYNCHRONOUS

@ Synchronous method.

o Aliasing errors
e Synchronicity issues
e Physics-dynamics inconsistency error

Possible solutions
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ASYNCHRONOUS

@ Asynchronous method:
e Does not solve the original problem

@ Monolithic approach (Type 1 coupling in P.Laloyaux’'s nomenclature)

o lterative method to solve the coupling problem
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Coupling methods

Schwarz Waveform Relaxation (AKA Global in time Schwarz method)
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SCHWARZ

The SWR algorithm reads :

Louk =1, on Qo x T; Lok =1 on Q, x T;
u(z,0) = up(z) z€ u(z,0) = uo(z) z€8Q,
Gouk = Gaul onl x T; Faul = Foul™  onT xT;

where T; = [ti; tit1]

@ At convergence, it provides a flux consistent solution : F,u, = Fou, and
Golo = Gauzon [ X T;
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Coupling methods

Why does it matter
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Hurricane Erica’s trajectory and ensemble spread

18 members of WRF/ROMS, generated through perturbations of initial conditions and
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Coupling Methods

Usual coupling vs Schwarz methods

Main drawbacks :

@ This is an iterative method

o Convergence speed greatly depends on Fy, G4 and 12(0,t) (d = a,0)
Advantages :

o This is a non-intrusive coupling method

@ At convergence, it provides a strongly coupled solution

Starting point of Rémi's PhD, in the framework of a variational system
o Can we improve the boundary conditions to accelerate the SWR convergence?

@ Take benefit of the minimisation iterations for the SWR ones
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B
Fully Iterative Method (FIM)

@ xo = up(z), z € Q=Q,UQ, is the controlled state vector

keve  KevanT - . .
0 x7% = (u;""%, u,"®) 7 is the converge solution of the SWR algorithm : keyg
iterations

o The first-guess u? in the SWR algorithm is updated after each minimisation iteration

tit1 o _ .-
Jema(x0) = J°(x0) + / <y —H), R (y— H(x ”))>Q dt
tj

@ The solution provided is strengly fuHy insanely coupled

@ It requires the adjoint of the coupling

o It possibly requires a large number of Schwarz iterations
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B
Truncated iterative method (TIM)

xo = (w0(2),ud(0,t))", z€ Q\T

@ The Schwarz iterations are truncated at kmax < kevg iterations
@ x™MaX — (Uamax, uf;max)T

o Extended cost function :

J = ap|Faukm(0,6) = Foulm (0, 03, + agl|Gauk (0. ) — Goul (0, )3,

with [|al[3 = (a,2)5

t’+1 ax _ max S
(o) = S0) + [ (y = HG) Ry = HOC)), der
tj
o The solution provided is quasi-strongly coupled

@ It requires the adjoint of the coupling

o It requires fewer number of Schwarz iterations than the FIM
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B
Weakly Interfaced Models (WIM)

X0 = (X0,2,X0,0)" With xo,g = (to],cq, » ua(0, t))
@ The direct coupling between both models is suppressed

@ Models are coupled during the assimilation process

JW/M(Xo) = Z (Jb(Xo,d) + Jo(xo,d)) + S

d=a,o

The solution provided is weakly coupled (as coupling is a weak constraint)

It requires only the adjoints of the uncoupled models

There is no coupling iterations
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Considered schemes - Summary

Algo  Control vector # of extended Adjoint of  Coupling
coupling cost the
iterations function coupling
FIM (uo(2)) Keve no yes strong
TIM (wo(z), ud)” Kimax possibly yes ~strong
WIM  (uo(2), ud, ud)” 1 yes no weak

Table: Overview of the properties of the coupled variational DA methods described
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Application to a 1D diffusion problem

Our simple coupled system : two coupled 1D diffusion equations

Previous algorithms are applied on a 1D linear diffusion problem. Let us consider
(d = a,o0):

o Lg=0:+ l/daf

® v, # U, the diffusion coefficients

o Gy = 140, and Fy = Id the interface operators on I’

o fy the second member such that the analytical solution is
uy(z,t) = %e_% {3+cos® (32£)} on Q4 x T;
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Application to a 1D diffusion problem

Our simple coupled system : two coupled 1D diffusion equations - results

Algo ar ag Kmax # of # of Interface RMSE in
minimisation models imbalance °C
iterations runs indicator
FIM - - kevg 58 1169 3.6910 2 0.220
TIM 0 - kevg 48 2016 5.63 10~ 12 0.220
TIM 0 - 5 245 1225 2.91102 0.216
TIM 0 - 2 1518 3036 3.77 0.272
TIM 0.01 - 2 425 850 9.89 107 0.217
TIM 0.01 - 1 344 344 8.38 10~ 0.215
WIM 0.01 40 1 2957 2957 1.40 10~ % 0.231
WIM 0.001 4 1 268 268 9.38103 0.240
WIM 0.0001 0.4 1 742 742 3.2910°1 0.327
Uncoupled 0 0 1 101 101 29.0 1.717
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B
Application to a 1D diffusion problem

Our simple coupled system : two coupled 1D diffusion equations - Computational cost vs accuracy
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FIM
= TIM o;=0, k=5
= TIM a;=0.01, k=1
= WIM a;=0.001, ay=4
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Final comments

It is difficult to draw a clear conclusion from such a simplistic testcase but
@ The way models are coupled should not be overlooked
o FIM and even TIM are probably too extreme

@ but controlling (as we saw this morning) and/or penalising the interface mismatch
could be a step toward stronger coupling

More work for Rémi:
@ more in depth theoretical study on convergence

o Apply these algorithms to a more realistic coupled SCM (Ocean/ABL, currently
being implemented within OOPS)

o look into optimized interface conditions for SWR

In parallel:

@ extend this work to ensemble smoother
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