U.S.NAVAL RESEARCH LABORATORY

Coupled Ocean-Acoustic Adjoint Sensitivity: Implications for Coupled DA

Matthew J. Carrier¹ Hans Ngodock¹, Josie Fabre², Rob Zingarelli², Tim Campbell¹, Tammy Townsend¹, and Innocent Souopgui³

> ¹US Naval Research Laboratory, Oceanography Div ²US Naval Research Laboratory, Ocean Acoustics Div ³The Univ. of Southern Mississippi, Dept. of Marine Sciences

WMO International Workshop on Coupled Data Assimilation Toulouse, FR, 18-21 October, 2016

- Motivation and Background
- Introduction to Models and their DA Components
- Forward Model and DA Coupling Infrastructure
- Initial Coupled Adjoint Sensitivity Test
- Conclusions/Future Work

... Metean o brajalaic Oblssevaaitoonss..

Ocean Model

- Navy Coastal Ocean Model (NCOM; Martin 2000)
 - Currently Navy's operational regional model
 - Uses Arakawa-C grid (horizontal) and sigma-Z grid (vertical)
 - Computes time-evolution of 3D fields of temperature, salinity, ocean velocity, and sea surface height

U.S.NAVAL RESEARCH LABORATORY

Ocean Model (DA Component)

NCOM-4DVAR (Ngodock & Carrier, 2014)

- Based on in-direct representer method for 4DVAR
- Weak-constraint capable
- Adjoint (AD) and Tangent Linear (TL) models based on dynamical core of NCOM
- Currently in transition to operations at the Navy's Oceanographic Office

Acoustic Model

- Range-dependent Acoustic Model (RAM; Collins 1994)
 - Navy's operational acoustic propagation model
 - Simulates acoustic pressure along 2D range/depth plane from environmental inputs (sound speed), source location/depth/frequency

Acoustic Model (DA Component)

RAM-VAR (Ngodock et al, 2016)

U.S.NAVAL

RESEARCH

- Weak-constraint capable
- AD and TL models based on RAM forward operator
- Assimilates observations of acoustic pressure

Deep Radial

Methodology (Forward Coupling)

BENEFIT

The acoustic model can be run anywhere in the NCOM domain, at any time, for any acoustic frequency, and as often as needed by the operational modelers

U.S.NAVAL

RESEARCH LABORATORY

Methodology (DA Coupling)

Building the coupled NCOM-RAM 4DVAR

U.S.NAVAL RESEARCH

_ABORATORY

Methodology (DA Coupling)

Building the coupled NCOM-RAM 4DVAR

U.S.NAVAL RESEARCH

LABORATORY

Methodology (DA Coupling)

Building the coupled NCOM-RAM 4DVAR

U.S.NAVAL RESEARCH

LABORATORY

Adjoint Sensitivity Results (Along Plane)

Examine adjoint sensitivity of acoustic pressure to

Sound Speed

Temperature

Salinity

Along the 2D range depth plane

(300 Hz, source at 10 m depth)

Range plane near Kuroshio current

Adjoint Sensitivity Results (Along Plane)

U.S.NAVAL

RESEARCH LABORATORY

Examine adjoint sensitivity of acoustic pressure at 35 km range 1500-1600 m depth

Adjoint Sensitivity Results (Along Plane)

U.S.NAVAL

RESEARCH LABORATORY

Examine adjoint sensitivity of acoustic pressure at 38 km range 650-750 m depth

Feedback to Ocean Adjoint

sampling to improve forecast accuracy

U.S.NAVAL

RESEARCH

Implications for Ocean DA

- Location of acoustic pressure observations are vital
 - If located within waveguide, acoustic pressure sensitivity to sound speed (and, thus, T/S) is high
- Coupling to ocean adjoint spreads information in 4D, beyond acoustic range/depth plane
 - Acoustic sensitivity can be used for adaptive sampling (acoustic and T/S)
- Acoustic pressure is non-unique
 - Many combinations of T/S will produce same acoustic signature
 - Constrained minimization should help