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Multiple timescale  
  coupled atmosphere-ocean  
    data assimilation 
    (for climate prediction & reanalysis)  



Motivation 

Context: climate forecasting & reanalysis 
o Interannual to decadal : External forcing & 

initial conditions important (Meehl et al. 2009, 
Hawkins & Sutton 2009) 

o Uninitialized hindcasts: skill limited to externally 
forced variability over continental & larger 
scales (Sakaguchi et al. 2012) 

 
o Coupled system: fast atmosphere & slow (deep) 

ocean 

 
Still unclear how to best initialize the coupled 
system (Meehl et al. 2014) 

o Slow has the memory (source of predictability)  
 but much fewer observations than fast 

 
o Requires coherent analyses of fast & slow  
 components 
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Strongly (& multiscale) coupled DA? 

(From Boer et al 
2016) 



Challenges / overarching questions 

o Coherence between initial conditions of slow & fast relies on  

 “cross-media” error covariances 
 

 Q1: What do these look like? How to reliably estimate?  

         Fast component is “noisy” (i.e. high-frequencies)… 

 

o Coupled system with wide variety of scales 
 

 Q2: Any benefits of multi-timescale DA? 

 
o Slow has the memory but fewer observations than in fast 

 

 Q3: What role atmospheric obs. in initializing fast & slow components  

        of a poorly observed ocean? … a one-way coupling perspective 
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Approach 

How to efficiently test ideas, prototype & evaluate strategies? 

o Complex Earth system models problematic for such basic research 

 Extremely expensive, especially for ensemble DA 
 (small ensembles & limited experimentation, realizations, etc.) 

 

o Motivates using simplified approach: 

 Low-order analog of the coupled N. Atlantic climate system 

 -> few state variables: obtained from comprehensive AOGCM output 

 Offline (i.e. “no cycling”) ensemble DA 
 -> prior ensemble members drawn from states of long climate simulations 
 -> same prior used at every analysis times 
    :: uninformed prior (other than climatology of the model) 
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Cheap: Allows extensive numerical experimentation 



Low-order analogue of N. Atlantic coupled system  
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[ Inspired by Roebber (1995) & used in Tardif et al (2014, 2015) ] 

-> Simplified system but w/ complex underlying (fast/slow) dynamics 

o State variables: 

 Atmosphere: 

     - MSLP along 40oN  transect 

   (“NAO” winds -> gyre) 

     - Meridional eddy  

    heat flux across 40oN 

 Ocean:  

     - subpolar  upper temperature & salinity 

     - AMOC index (max. overturning streamfunction in N. Atlantic)    
 [ taken as unobserved! ] 

o Data derived by coarse-graining of state-of-the-art AOGCM gridded output 

 

 

o Monthly data for above variables as basis for DA experimentation 

  -> truth, observations (truth + random noise) & prior 

 



Low-order analogue of N. Atlantic coupled system  
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• Analogue data derived from: 
o Community Climate System Model version 4 (CCSM4) gridded output 

from CMIP5 archives 

o 1000-yr “Last Millennium” simulation (pre-industrial natural variability) 
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Low-order analogue of N. Atlantic coupled system  
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AMOC index 
(Max. value of overturning streamfunction in N. Atlantic) 

 

 

 

 

 

 

 

 

*** How much of this *unobserved* component of the coupled system  

can we recover using coupled multiple timescale DA? *** 

(by assimilating obs from other components of the low-order analogue) 
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(Strongly) Coupled atmosphere-ocean DA 
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Coupled atmosphere-ocean DA 

o Ensemble DA & cross-media update  
 Assimilation of atmospheric obs. updating the ocean … 
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Fast noise contaminates K 

Cross-media covariances:  

: obs. of fast -> noisy 

: state vector, including slow 
  variables 
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Consider assimilation of time-averaged obs.  
  => Averaging over the noise -> increase cov. w/ slow component 
  => Increase “observability” -> reduce obs. error variance (R)  ~1/sqrt(N) 

[Tardif et al. 2014, 2015; Lu et al. 2015] 



Time-average DA 

• Assimilation of time-averaged observations 
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just update time-mean 

Time-mean:  

Deviations: 

(Dirren & Hakim 2005; Huntley & Hakim 2010) 

Time averaging & Kalman-filter-update operators linear and commute 

Full state: 

[State vector] [Observations] 
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Multiple timescale DA 

• Assimilate obs. at “appropriate” time scale 
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End product is final analysis at time scale t2  
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Recover full state 

Do update 

Decompose at scale t1 

Do update 

Decompose at scale t2 

Recover full state 

If at last step (i.e.         shares same time scale as         :         = 0  



CDA experiments 

• Ensemble square root filter (Whitaker & Hamill 2002) 

• Serial obs. processing 

• Low-order system -> no localization 

• Offline/no cycling -> no inflation 

• “Reanalysis mode” -> all obs. available a-priori 

 

• Perfect model experiments, i.e. same model for truth & observations  

 -> obs.: random noise added (10% of climatological variance) 

• Frequency of obs.: monthly 

 

• Generate AMOC analyses over 1000 years 

• Run DA experiment w/ various obs. availability scenarios 

(atmosphere vs. ocean) 

• Consider 2 time scales: a slow (t1) and a fast (t2 = monthly) 
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simplifications 



Assimilated obs. vs. time scales 

• Covariability w/ AMOC index  vs averaging time scale 
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month decade year 
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Subpolar ocean T, S MSLP  
@  

40oN 

Bjerknes  
compensation 

(?) 
(Shaffrey & 

Sutton 2006) 



        Coupled DA of MSLP (atmosphere) and upper subpolar ocean T, S 

 

 
 

Single vs. multiple timescale DA 

14 

C
E 

(A
M

O
C

) 

M
O

C
 (

Sv
) 

32 
30 
28 
26 
24 
22 
20 
18 

M
O

C
 (

Sv
) 

32 
30 
28 
26 
24 
22 
20 
18 

M
O

C
 (

Sv
) 

32 
30 
28 
26 
24 
22 
20 
18 

1 scale: month 

1 scale: 20 yr 

Multiple timescales 
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2 time scales: 
   t1 = 20 yrs 
   t2 = monthly 

Prior  
ensemble mean 

Time (yrs) 
         1000             1200           1400             1600            1800 

Ensemble mean 
AMOC analyses 



Verification metric 
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Verification vs. time scales                                                                                                   
( calculated with analyses covering full 1000 yrs ) 

 
 

Single vs. multiple timescale DA 
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2 time scales: 

 t1 = 50 yrs 

 t2 = 1 month 

 

 
 

Multi-time scale DA: ocean vs. atmosphere-only 
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Multi-time scale DA: ocean vs. atmosphere-only 



Toward application to real data… 
• Last Millennium Reanalysis (LMR) 

o Offline assimilation of paleoclimate data 
 Tree rings 

 Ice core & coral  isotope ratios 

o Prior : CCSM4 “Last Millennium” 
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Takeaways … 
• Q1: Cross-media covariances, how to reliably estimate? 

  A: Use time-averaging over appropriate scale 

o Averaging over “noise” in fast atmosphere = > enhances covariability w/ slow 
ocean 

• Q2: Benefits from multiple timescale DA approach? 

 A: Yes!  

o More accurate analyses of fast & slow 

o Reduced errors at intermediate (~annual) scales from DA of monthly & decadal.-
avg. obs.  

• Q3: What role atmospheric obs. in initializing ocean’s fast & slow components ? 

 A: Can be significant: 

o Frequent DA for fast ocean component: Fast response to winds, surface fluxes 
etc. 

o Less significant role for constraining slow, if ocean *sufficiently* well-observed 

o Fully coupled DA of time-averaged obs. important when poorly observed ocean 
(w/ appropriate choice of assimilated obs.) 
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