Multiple timescale coupled atmosphere-ocean data assimilation
(for climate prediction & reanalysis)

Robert Tardif
Gregory J. Hakim
University of Washington

w/ contributions from:
Chris Snyder
NCAR
Context: climate forecasting & reanalysis

- Interannual to decadal: External forcing & initial conditions important (Meehl et al. 2009, Hawkins & Sutton 2009)

- Uninitialized hindcasts: skill limited to externally forced variability over continental & larger scales (Sakaguchi et al. 2012)

- Coupled system: fast atmosphere & slow (deep) ocean

Still unclear how to best initialize the coupled system (Meehl et al. 2014)

- Slow has the memory (source of predictability) but much fewer observations than fast

- Requires coherent analyses of fast & slow components

Strongly (& multiscale) coupled DA?
Challenges / overarching questions

- **Coherence** between initial conditions of slow & fast relies on “cross-media” error covariances
 - **Q1**: What do these look like? How to reliably estimate? Fast component is “noisy” (i.e. high-frequencies)...

- Coupled system with wide variety of scales
 - **Q2**: Any benefits of multi-timescale DA?

- Slow has the memory but fewer observations than in fast
 - **Q3**: What role atmospheric obs. in initializing fast & slow components of a poorly observed ocean? ... a one-way coupling perspective
How to efficiently test ideas, prototype & evaluate strategies?

- **Complex Earth system models problematic for such basic research**
 - Extremely expensive, especially for ensemble DA
 (small ensembles & limited experimentation, realizations, etc.)

- **Motivates using simplified approach:**
 - **Low-order analog** of the coupled N. Atlantic climate system
 -> **few state variables**: obtained from comprehensive AOGCM output
 - **Offline** (i.e. “no cycling”) ensemble DA
 -> prior ensemble members drawn from states of long climate simulations
 -> same prior used at every analysis times
 :: uninformed prior (other than climatology of the model)

Cheap: Allows extensive numerical experimentation
Low-order analogue of N. Atlantic coupled system

- **State variables:**
 - **Atmosphere:**
 - MSLP along 40°N transect
 ("NAO" winds -> gyre)
 - Meridional eddy
 heat flux across 40°N
 - **Ocean:**
 - Subpolar upper temperature & salinity
 - AMOC index (max. overturning streamfunction in N. Atlantic)
 [taken as unobserved!]

- Data derived by coarse-graining of state-of-the-art AOGCM gridded output
 -> Simplified system but w/ complex underlying (fast/slow) dynamics

- **Monthly** data for above variables as basis for DA experimentation
 -> truth, observations (truth + random noise) & prior
Low-order analogue of N. Atlantic coupled system

• Analogue data derived from:
 o Community Climate System Model version 4 (CCSM4) gridded output from CMIP5 archives
 o 1000-yr “Last Millennium” simulation (pre-industrial natural variability)
Low-order analogue of N. Atlantic coupled system

AMOC index
(Max. value of overturning streamfunction in N. Atlantic)

CCSM4 1000-yr last millennium CMIP5 run: maximum AMOC index

Variability with fast & slow time scales

How much of this *unobserved* component of the coupled system can we recover using coupled multiple timescale DA?*
(by assimilating obs from other components of the low-order analogue)

International Workshop on Coupled Data Assimilation 2016, Toulouse
(Strongly) Coupled atmosphere-ocean DA

Ensemble Kalman filter:

\[x_a = x_b + K(y - Hx_b) \]

\[\begin{aligned} x &= \begin{pmatrix} MSLP \\ . \\ . \\ T \\ S \end{pmatrix} \\ \text{atmos.} \\ \end{aligned} \]

\[\begin{aligned} y &= \begin{pmatrix} MSLP \\ . \\ T \\ S \end{pmatrix} \\ \text{atmos.} \]

\[\begin{aligned} \hat{y}_e &\text{: model estimate of obs.} \\ \end{aligned} \]
Coupled atmosphere-ocean DA

- Ensemble DA & cross-media update
 - Assimilation of atmospheric obs. updating the ocean ...

\[
x_a = x_b + K(y - Hx_b)
\]

Cross-media covariances:

- \(y^e \): obs. of fast -> noisy
- \(x \): state vector, including slow variables

Fast noise contaminates \(K \)

Consider assimilation of **time-averaged obs.**

=> **Averaging over the noise** -> increase cov. w/ slow component

=> **Increase “observability”** -> reduce obs. error variance (\(R \)) \(~1/\sqrt{N}\)

[Tardif et al. 2014, 2015; Lu et al. 2015]
Time-average DA

- Assimilation of time-averaged observations

 \[
 \begin{align*}
 \mathbf{x} &= \overline{\mathbf{x}} + \mathbf{x}' \\
 \mathbf{y} &= \overline{\mathbf{y}} + \mathbf{y}'
 \end{align*}
 \]

 Time averaging & Kalman-filter-update operators linear and commute

 \[
 \begin{aligned}
 \overline{\mathbf{x}}_a &= \overline{\mathbf{x}}_b + K_A (\overline{\mathbf{y}} - H\overline{\mathbf{x}}_b) \\
 K_A &= \overline{\mathbf{x}}_b \mathbf{y}_e^T [\mathbf{y}_e \mathbf{y}_e^T + \mathbf{R}]^{-1}
 \end{aligned}
 \]

 Time-mean:

 \[
 \begin{aligned}
 \mathbf{x}'_a &= \mathbf{x}'_b + K_P (\overline{\mathbf{y}} - H\overline{\mathbf{x}}_b) \\
 K_P &= \mathbf{x}'_b \mathbf{y}_e^T [\mathbf{y}_e \mathbf{y}_e^T + \mathbf{R}]^{-1}
 \end{aligned}
 \]

 Deviations:

 \[
 \begin{aligned}
 \mathbf{x}'_b \mathbf{y}_e^T \approx 0 \rightarrow \mathbf{x}'_a &= \mathbf{x}'_b \\
 \text{just update time-mean}
 \end{aligned}
 \]

 Full state:

 \[
 \mathbf{x}_a = \overline{\mathbf{x}}_a + \mathbf{x}'_b
 \]

 (Dirren & Hakim 2005; Huntley & Hakim 2010)
Multiple timescale DA

- Assimilate obs. at “appropriate” time scale

\[x_b = \bar{x}_b^{T1} + x'_b \]

\[\bar{x}_a^{T1} = \bar{x}_b^{T1} + K_A (\bar{y}_1^{T1} - H \bar{x}_b^{T1}) \]

\[x_a = \bar{x}_a^{T1} + x'_b \]

\[x_b = \bar{x}_b^{T2} + x'_b \]

\[\bar{x}_a^{T2} = \bar{x}_b^{T2} + K_A (\bar{y}_2^{T2} - H \bar{x}_b^{T2}) \]

\[x_a = \bar{x}_a^{T2} + x'_b \]

If at last step (i.e. \(y_2 \) shares same time scale as \(x_b \)): \(x'_b = 0 \)

End product is final analysis at time scale \(\tau_2 \)
CDA experiments

- **Ensemble square root filter** (Whitaker & Hamill 2002)
- Serial obs. processing
- Low-order system -> no localization
- Offline/no cycling -> no inflation
- “Reanalysis mode” -> all obs. available a-priori

- **Perfect model experiments**, i.e. same model for truth & observations
 -> obs.: random noise added (10% of climatological variance)
- Frequency of obs.: **monthly**

- Generate AMOC analyses over 1000 years
- Run DA experiment w/ **various obs. availability scenarios**
 (atmosphere vs. ocean)
- Consider **2 time scales**: a **slow** (τ_1) and a **fast** ($\tau_2 = $ monthly)
Assimilated obs. vs. time scales

- Covariability w/ **AMOC index** vs **averaging time scale**

![Graph showing covariability with AMOC index](image)

CCSM4: Covariability with AMOC index

- MSLP @ 40°N
- Subpolar ocean T, S

Correlation vs **Time scale (year)**:
- Month
- Year
- Decade

Atmospheric meridional eddy heat flux

Bjerknes compensation

(?)

(Shaffrey & Sutton 2006)
Single vs. multiple timescale DA

Coupled DA of MSLP (atmosphere) and upper subpolar ocean T, S

Ensemble mean AMOC analyses

2 time scales:
\[\tau_1 = 20 \text{ yrs} \]
\[\tau_2 = \text{monthly} \]

International Workshop on Coupled Data Assimilation 2016, Toulouse
Verification metric

Coefficient of efficiency
(Nash and Sutcliffe 1970)

\[CE = 1 - \frac{\sum_{i=1}^{N} (x_i - x_i^a)^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2} \]

- \(CE \approx 1 \): analysis error variance \(<\) climo. variance
- \(CE = 0 \): no information over climatology
- \(CE < 0 \): Really bad! (…bias)
Verification vs. time scales
(calculated with analyses covering full 1000 yrs)

CE for ensemble mean AMOC analyses

2 time scales:
\(\tau_1 = 20 \) yrs
\(\tau_2 = \text{monthly} \)
Multi-time scale DA: ocean vs. atmosphere-only

2 time scales:

\[\tau_1 = 50 \text{ yrs} \]
\[\tau_2 = 1 \text{ month} \]

- monthly only
- 50-yr only
- 50-yr ocean T,S or atmospheric meridional eddy heat flux + monthly MSLP

CE for ensemble mean AMOC analyses

Ocean T,S replaced by atmos. eddy heat flux obs.

Atmosphere-only DA

w/o ocean DA
Multi-time scale DA: ocean vs. atmosphere-only

Atmosphere-only DA: vs. long time scale

- 1 yr + monthly
- 10 yr + monthly
- 20 yr + monthly
- 50 yr + monthly

Averaging interval (yrs)

International Workshop on Coupled Data Assimilation 2016, Toulouse
Toward application to real data...

- **Last Millennium Reanalysis (LMR)**
 - Offline assimilation of paleoclimate data
 - Tree rings
 - Ice core & coral isotope ratios
 - Prior: CCSM4 “Last Millennium”

Takeaways …

• **Q1:** Cross-media covariances, how to reliably estimate?

 A: Use **time-averaging** over **appropriate scale**

 o Averaging over “noise” in fast atmosphere = > enhances covariability w/ slow ocean

• **Q2:** Benefits from multiple timescale DA approach?

 A: Yes!

 o More accurate analyses of **fast & slow**

 o **Reduced errors** at **intermediate** (~annual) **scales** from DA of monthly & decadal-avg. obs.

• **Q3:** What role atmospheric obs. in initializing ocean’s fast & slow components?

 A: Can be **significant**:

 o Frequent DA for **fast ocean** component: Fast response to **winds, surface fluxes** etc.

 o **Less significant** role for constraining **slow**, if ocean *sufficiently* well-observed

 o **Fully coupled DA of time-averaged obs. important** when poorly observed ocean (w/ appropriate choice of assimilated obs.)