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Interannual-to-pentadal climate prediction

- Major issues of inter-annual/decadal prediction with a coupled model are
e.g., Hawkins and Sutton (2009); Murphy et al. (2010)

w Inconsistent initialization,
Dynamically self-consistency is preferable.

How is the impact of the in-consistency between the model and its initial

conditions on the climate forecast? e.g, Balmaseda and Anderson (2009);
Smith et al. (2012)

ylacking information about future external forcing
All the climate factors should be included in the model, but it seems impossible.

What strategy Is possible for a specific prediction?

Here, | will demonstrate how is the advantage of our 4D-VAR CDA system to
these issues.



4D-VAR coupled data assimilation system
(K?'CDA) Sugiura et al. (2008)

- Coupled Model (CFES):
. T42L24 AFES for AGCM
- 1x1deg L45 MOM3 for OGCM
IARC Sealce model
- MATSIRO Model for Land

« Observational Data
«  Atmosphere:
+ NCEP’s BUFR data U,V,T,Q (10daily)
- SSM/I sea wind scalar x ERA40 wind direction (10daily)
- Ocean:
- T/P altimeter data(10daily)
- Reynolds SST (10daily)
- WOD data T,S (monthly )
+ Ocean Data Assimilation Product T,S(monthly)

Forward Model

. Adjomt Code | Update from Sugi2008:
Adjoint OGCM and adjoint AGCM led [Line by line transf tion b
_I_Aj&lg AR and adjoin are coupled [Line by line transformation by : historical radiative fOfCIﬂg

- Temporal averaging of forward field for the adjoint integration is applied to smooth the | with greenhouse gases
basic field [coarse-grained formalism]

- Adjoint AGCM contains damping terms to suppress the strong adjoint sensitivity from I (CH4 CO2, N20O annual),
weather fluctuations.
' aerosol (black and
T organic carbon, dust,
oL (oM s = |
- =( } A-TA+H'R 1(Hx—y) | sulfur: monthly) and
ot OX Jxex - I volcanic effect (monthly)
A :adjoint variables, x:temporal average, -TI'A:damping. ! i from Historical and
' RCP4.5 scenario-based
| data/5|mulat|ons in CMIP5




How we improve a coupled model which
contains different time scales

Forward model forecasts both weather + seasonal + interannual
modes

Adjoint code runs under the forcing of monthly mean gap to

Improve background state - Temporal averaging of forward field for the adjoint
mtegratlon is applied to smooth the basic field !

Leave weather mode to the ability of CGCM with improved
background states
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What did we control?

1. Ocean initial condition
2. Bulk parameters controlling Air-sea

fluxes of
=~ Aa)Culvlv

Sensible heat F, = ,OC@H M(ﬁg — 6’)

Latent heat F, = @E M(qg - CI)

adjustment factors
(X,y,10-dally)

Momentum -
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1) Impact of in-consistency
between the climate model and
Its initial conditions on climate
prediction is examined



Initialization Liu et al., (2016)

Table 1 Summary of the experiments

Experiments Initialization Forecast period Initial condition Forcing Realization
20C" Jan of 1946 19462007 1980-CDA (OHG, Aerosol, volcano 1
CIH* Jan of each year 19802007 CIA, full state GHG, Aerosol, volcano 1
GIH" Jan of each year 19802007 GECCOZ, full state GHG, Aerosol, volcano 1
AGIHF Jan of each year 19802007 Anogpron: + Climgygy-, ancmaly GHG, Aerosol, volcano 1

* 20C: Un-initialized 20th century simulation

* CIH: CDA initialized hindcasts

® GIH: GECCOY initialized hindcasts :

¢ AGIH: GECCO? initialized hindcasts, with anomaly initialization stratepy 9-year hindcasts

(start from 1980-2006)

I L) U(a) L L]

Global-averaged Self-consistent

Annual mean SST

HadISST
ODASs’ estimations
Coupled hindcasts

4 In-consistent

raw GIH

In-consistent
| only for Anomaly
20 .

20.5

raw AGIH

1980 1985 1990 1995 2000 2005 2010
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Is GECCO2 wrong? =>No

" 120" W Lo 'y

Fig.4 SST difference to HadISST averaged over 1980-2006 for Fig. § Spatial distribution of the anomaly correlation coefficient for

CDA (top panel) and GECCO?2 (bottom panel) annual-mean SST between CDA and HadISST (fgp), and GECCO2
and HadISST (bottom). Only the significant correlation coefficients
(at 95 % level) are shown here

SST difference Anomaly correlation coefficient



Huge Initial shocks In tropical ocean

Red, Cyan: CDA _
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D
Skill of SST forecast

Anomaly Correlation Coefficient with 1-year lead time.
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One example illustrating the importance of dynamical consistency.
Note: Not only representing values but structures based on
fundamental nature is vital for accurate forecasts.



2) Results of multiyear climate
prediction to illustrate how the
4D-Var approach can improve
the skill in hindcasting pentadal
climate changes



Multiyear climate prediction with initialization based on 4D-Var

data assimilation o
Mochizuki et al. JGR2016 (poster)

Yro Yr1 Yr2 Yr3
Assimilation
9month fwd. & bwd. runs

Ensembles of
initialized hindcasts
run

1year approac Syear hindcast run
Values used as . L
adjustment factors '

Optimized values Unity (=1.0)

Fig. 1. Schematics of the experimental designs of the data assimilation and the subsequent ensembles
of multivear hindcasis.

(a) Global mean SAT onomaly (degC)
g'g: = CEP reandysis (annua meqn;, . | Fig 2 (a) Global mean SAT anomalies (relative to

0.4 _ﬁﬁ ':rzrﬂwm (tyear mbm) g BT the average during 1971-2000) derived from the

gj::f'ff'ffF_F_E?__fo?_‘f‘?:r’J...., ....... . x  A\VIaf | CFESensemble mean and the NCEP reanalysis.
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Multiyear climate prediction with initialization based on 4D-Var
data assimilation

Annomaly correlation coefficient of ocean heat content (upper 320m)

Optimized
State on
Estimation . _ _ _
The hindcasts in yr2-yr5 fairly
reproduce the global mean states
and exhibit high skills over the
. North Atlantic and Indian
Pentadal B Oceans, consistent with the
Hindcast CMIPS results.

—n.
(2-5yr mean) ., Inaddition, Pacific gets better...

o eE e e uonsn 0 Mochizuki et al. JGR2016 (poster)

Fig. 3. Anomaly correlation coefficients of the simulated OHC upper 320m with the ocean objective analysis (Ishii
and Kimoto 2009 JO) (=90% confidence levels). Climate drifts and linear trends are removed at each grid point. Plot-
ted values in the left and right panels are calculated using the CFES andIRGES simulations, respectively.



3) Applicability of our system to El Nifio predictions



Spring Persistent Barrier

e TesE Our predictive capabilities were once
s{=—7-  Springtime | moreshown to be inadequate in
< <81-83 l TN 2014 when an El Nifio event was

widely predicted by international
climate centers but failed to
materialize.

opaque spring persistence barrier
severely restricts longerterm,
accurate forecasting beyond boreal

spring.

NINO3 SSTa

“UAN  APR JUL OCT JAN APR JUL OCT JAM APR JUL  OCT

-2 -1 JAN EI Nino year

We have focused on a coupled data assimilation approach to analyze the
temporal changes of climate state and reduce the abrupt drop in forecast skill
that develops as a result of the SPB



Interannual variation of
the bulk adjustment factors

For Momentum For Latent heat

interannual STD of M interannual STD of E

0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25

a is changeable year by year......
(due to some missing factors of model/bulk formulation, etc.)



ENSO energetics

Amplitude of wavelet transform
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Magnitude of wavelet transform of Mean perturbation
wind power (Wmp) averaged in 150°E-100°W, 5°S-5°N.

Decomposed Wmp spectrum on
seasonal timescale.

The annual exchange of kinetic energy between the atmosphere and ocean
responsible for ENSO genesis is modulated on pentadal to decadal timescales
largely independent of the inherent ENSO variability



L
A new approach to ENSO prediction

Optimized bulk adjustment factor for momentum
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We start by constructing a set of seasonal adjustment factors “Clim”
from the climatology by simply averaging the historical values of the
optimal adjustment factor which are calculated over the 27-year period
from 1980 to 2006. (10-daily value)

This will be applied in ENSO forecast.



L
A new approach to ENSO prediction

Wavelet transform for seasonal timescale
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we identify which phase of the pentadal
to decadal cycle in the tropical
seasonal state is appropriate on the
basis of the estimated time series of
Wmp.

Under the assumption that long-term
modulations continue along their recent
trend within a few years of prediction,
we determine the values of the
appropriate adjustment factor for the
future projection.



Adjusting coupling parameters in ENSO forecast

Schematic view of a adjustment

Conventional a=1

Anomalous high Seasonality a=clim(x,y,36)

For practical use, we simply apply the adjustment factor
as either a “1” or a “Clim”.

1" are relevant to periods with relatively weak seasonal
variations in energy exchange

w"Clim” should be applied to (pentadal/decadal) periods with
strong seasonality such as in the 1970 s, so that the modeled
coupling intensities are boosted by their respective seasonal
adjustment factor.



NINO3.4 SST anomaly (°C)

NINO3.4 SST anomaly (°C)
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Results of hindcast for the past major El Nifios
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Schematic view of a adjustment

Conventional a=1

Anomalous high Seasonality a=clim(x,y,36)

This adjustment can clearly
control the bifurcation behavior
of El Nifio development after
spring time.



Validation

Wavelel transform for seasonal timescale
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Error reduction

C e 7 pases 72/73-02,/08

=1.0

Hindcasted SST error (K)
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Prediction error estimated by difference in root mean square differences
for hindcasted NINO3.4 SSTs between conventional and advanced
predictions for 7 El Nino events (red) and 3 events in a period of strong

seasonality (green). Note: Being a priori info given.
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Summary

The benefit of initializing a decadal prediction system with dynamically consistent initial
conditions is explored by comparing multi-year-hindcast results with different ocean initial
conditions. We can clearly identify that not only representing values but structures based on
fundamental nature is vital for accurate forecasts.

---In our case, the most significant improvement is identified over the tropical Pacific.
Inconsistency between wind stress (atm.) and pressure field (ocn) caused critical shock at the
initial stage of hindcasts.

By using dynamically self-consistent initial conditions, the hindcasts in yr2-yr5 fairly
reproduce the global mean states and, in particular, exhibit high skills over the North
Atlantic and Indian Oceans, consistent with the CMIP5 results.

[Pacific => see the poster by Dr. Mochizuki]

Our new coupled climate simulation which incorporates long-term influences directly,
generates more accurate hindcasts for the major historical El Nifios. The error value between
predicted and observed sea surface temperature (SST) in a specific tropical region can
consequently be reduced by 0.6 Kelvin for one-year predictions.



Future work: one theoretical approach

PHYSICAL REVIEW E 93, 052212 (2016)

Coarse-grained sensitivity for multiscale data assimilation

Nozomi Sugiura”
Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
(Received 30 October 2015; revised manuscript received 22 February 2016; published 13 May 2016)

‘We show that the effective average action and its gradient are useful for solving multiscale data assimilation
problems. We also present a procedure for numerically evaluating the gradient of the effective average action and
demonstrate that the variational problem for slow degrees of freedom can be solved properly using the effective

gradient.
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Lorenz model
FIG. 6. Action S[¢] (black curve), gradient of action 4 5[¢]/d¢,
(blue curve), and effective gradient of action 81" [¢]/d¢, (red curve)
for the Lorenz model. The true value for the data assimilation problem
is ¢ = —2.156 and the first guess is —0.156.

Availability of effective average action is been examining.
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FIG. 7. Action S[¢] (black curve), gradient of action §S5[¢]/8¢,
(blue curve), and effective gradient of action &I';[¢]/d¢, (red
curve) for the two-scale Lorenz model. The true value for the data
assimilation problem is ¢; = 3.011 and the first guess is 5.011.

This hopefully leads to a new adjoint-based system.



