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Interannual-to-pentadal climate prediction 

• Major issues of inter-annual/decadal prediction with a coupled model are 

 

☆Inconsistent initialization, 

Dynamically self-consistency is preferable. 

How is the impact of the in-consistency  between the model and its initial 
conditions on the climate forecast? 

 

☆lacking information about future external forcing  

All the climate factors should be included in the model, but it seems impossible. 

What strategy is possible for a specific prediction?   

 

 

 

Here, I will demonstrate how is the advantage of our 4D-VAR CDA system to 
these issues. 

e.g., Hawkins and Sutton (2009); Murphy et al. (2010) 

e.g, Balmaseda and Anderson (2009);  

                              Smith et al. (2012)   



4D-VAR coupled data assimilation system 

                          (K7-CDA) 
• Coupled Model (CFES): 

• T42L24 AFES for AGCM 

• 1x1deg L45 MOM3 for OGCM 

• IARC SeaIce model 

• MATSIRO Model for Land 

• Observational Data 
• Atmosphere:  

• NCEP’s BUFR data U,V,T,Q (10daily) 

• SSM/I sea wind scalar x ERA40 wind direction (10daily) 

• Ocean:  
• T/P altimeter data(10daily)  

• Reynolds SST (10daily) 

• WOD data T,S (monthly )  

• Ocean Data Assimilation Product T,S(monthly) 

• Adjoint Code 
• Adjoint OGCM and adjoint AGCM are coupled [Line by line transformation by 

TAMC,TAF]  

• Temporal averaging of forward field for the adjoint integration is applied to smooth the 
basic field [coarse-grained formalism] 

• Adjoint AGCM contains damping terms to suppress the strong adjoint sensitivity from 
weather fluctuations. 

 

 

 

  

damping.:average,  temporal:ariables,adjoint  v:

M 1

Γλxλ

yxHRHΓλλ
x

λ

xx




















 



T

T

t

Sugiura et al. (2008) 

Update from Sugi2008: 

historical radiative forcing 

with greenhouse gases 

(CH4, CO2, N2O :annual),  

aerosol (black and 

organic carbon, dust, 

sulfur: monthly) and 

volcanic effect (monthly)  

from Historical and 

RCP4.5 scenario-based 

data/simulations in CMIP5.  
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How we improve a coupled model  which 

contains different time scales      

• Forward model  forecasts both weather + seasonal + interannual 
modes 

 

• Adjoint code runs under the forcing of monthly mean gap to 
improve background state 

 

• Leave weather mode to the ability of CGCM with improved 
background states 

 

Temporal averaging of forward field for the adjoint 
integration is applied to smooth the basic field 



What did we control? 

1. Ocean initial condition 

2. Bulk parameters controlling Air-sea 

fluxes of  

 

 

 

 

 

Momentum 

 

Sensible heat 

 

Latent heat 
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adjustment factors 

(x,y,10-daily) 



NCEP2 ERA40 

              CDA Observation (COADS) 

Latent Heat flux [W/m2] 

We have carried out wide variety of 

hindcast experiments by using this 4D-Var 

coupled data assimilation system, to 

examin the potential ability of multiyear 

forecast.  



1) Impact of in-consistency 

between the climate model and 

its initial conditions on climate 

prediction is examined 



Initialization Liu et al., (2016) 

Self-consistent 

 

 

 

In-consistent 

 

 

In-consistent  

only for Anomaly 

 

9-year hindcasts 

(start from 1980-2006) 

Global-averaged 

Annual mean SST 

 

HadlSST 

ODAs’ estimations 

Coupled hindcasts 



Is GECCO2 wrong? =>No  

SST difference         Anomaly correlation coefficient  

 

CDA 

 

 

 

 

 

 

GECCO2  



Huge initial shocks in tropical ocean 

Zonal wind stress 

 

 

-Oceanic pressure gradient 

Red,  Cyan: CDA 

Black, Blue: GECCO2 

Wind stress 

/SST 

Differences 

(GECCO2-CDA) 

after initial shock 

El Niño  non-EN 



Skill of SST forecast 

One example illustrating the importance of dynamical consistency. 

Note: Not only representing values but structures based on 

fundamental nature is vital for accurate forecasts.   

Self-consistent                            In-consistent              In-consistent only for Anomaly 

 

Anomaly Correlation Coefficient with 1-year lead time. 



2) Results of multiyear climate 

prediction to illustrate how the 

4D-Var approach can improve 

the skill in hindcasting pentadal 

climate changes  



Multiyear climate prediction with initialization based on 4D-Var 

data assimilation 

 

 

Mochizuki et al. JGR2016 (poster) 



Multiyear climate prediction with initialization based on 4D-Var 

data assimilation 

 

 

Mochizuki et al. JGR2016 (poster) 

The hindcasts in yr2-yr5 fairly 

reproduce the global mean states 

and exhibit high skills over the 

North Atlantic and Indian 

Oceans, consistent with the 

CMIP5 results. 

In addition, Pacific gets better…  

Annomaly correlation coefficient of ocean heat content (upper 320m) 

Optimized 

State 

Estimation 

 

 

 

 

Pentadal 

Hindcast 

(2-5yr mean) 



3) Applicability of our system to El Niño predictions 



Spring Persistent Barrier 

     -2               -1    JAN El Nino year 

Spring time 
Our predictive capabilities were once 

more shown to be inadequate in 

2014 when an El Niño event was 

widely predicted by international 

climate centers but failed to 

materialize.  

 

opaque spring persistence barrier 

severely restricts longerterm, 

accurate forecasting beyond boreal 

spring. 
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We have focused on a coupled data assimilation approach to analyze the 

temporal changes of climate state and reduce the abrupt drop in forecast skill 

that develops as a result of the SPB 



  

NINO4 NINO3.4 

For Momentum For Latent heat 

Interannual variation of  

the bulk adjustment factors   

α is changeable year by year…… 

(due to some missing factors of model/bulk formulation, etc.) 



ENSO energetics 

Decomposed Wmp spectrum on 

seasonal timescale. 

Masuda et al.(2015) 

Magnitude of wavelet transform of Mean perturbation 

wind power (Wmp) averaged in 150oE-100oW, 5oS-5oN. 

  The annual exchange of kinetic energy between the atmosphere and ocean 

responsible for ENSO genesis is modulated on pentadal to decadal timescales 

largely independent of the inherent ENSO variability 



A new approach to ENSO prediction 

 

Masuda et al.(2015) 

We start by constructing a set of seasonal adjustment factors “Clim” 

from the climatology by simply averaging the historical values of the 

optimal adjustment factor which are calculated over the 27-year period 

from 1980 to 2006. (10-daily value) 

 

This will be applied in ENSO forecast. 

Clim(x,y,36) 



A new approach to ENSO prediction 
 

 

 

Masuda et al.(2015) 

we identify which phase of the pentadal 

to decadal cycle in the tropical 

seasonal state is appropriate on the 

basis of the estimated time series of 

Wmp.  

Under the assumption that long-term 

modulations continue along their recent 

trend within a few years of prediction, 

we determine the values of the 

appropriate adjustment factor for the 

future projection. 



Schematic view of α adjustment 

Conventional α=1 

For practical use, we simply apply the adjustment factor 

as either a “1” or a “Clim”. 

 

☆”1” are relevant to periods with relatively weak seasonal 

variations in energy exchange 

☆”Clim” should be applied to (pentadal/decadal) periods with 

strong seasonality such as in the 1970 s, so that the modeled 

coupling intensities are boosted by their respective seasonal 

adjustment factor. 

Adjusting coupling parameters in ENSO forecast 

Anomalous high Seasonality α=clim(x,y,36) 



Schematic view of α adjustment 

Conventional α=1 

Results of hindcast for the past major El Niños 

Anomalous high Seasonality α=clim(x,y,36) 

This adjustment can clearly 

control the bifurcation behavior 

of El Niño development after 

spring time.  



Validation 



Error reduction 

Masuda et al.(2015) 

Prediction error estimated by difference in root mean square differences 

for hindcasted NINO3.4 SSTs between conventional and advanced 

predictions for 7 El Nino events (red) and 3 events in a period of strong 

seasonality (green). Note: Being  a priori info given. 



Summary 
The benefit of initializing a decadal prediction system with dynamically consistent initial 

conditions is explored by comparing multi-year-hindcast results with different ocean initial 

conditions. We can clearly identify that not only representing values but structures based on 

fundamental nature is vital for accurate forecasts.   

 

---In our case, the most significant improvement is identified over the tropical Pacific. 

Inconsistency between wind stress (atm.) and pressure field (ocn) caused critical shock at the 

initial stage of hindcasts.  

 

By using dynamically self-consistent initial conditions, the hindcasts in yr2-yr5 fairly 

reproduce the global mean states and, in particular,  exhibit high skills over the North 

Atlantic and Indian Oceans, consistent with the CMIP5 results. 

[Pacific => see the poster by Dr. Mochizuki] 

 

Our new coupled climate simulation which  incorporates long-term influences directly, 

generates more accurate hindcasts for the major historical El Niños. The error value between 

predicted and observed sea surface temperature (SST) in a specific tropical region can 

consequently be reduced by 0.6 Kelvin for one-year predictions.  



Future work: one theoretical approach 

This hopefully leads to a new adjoint-based system.  

Availability of effective average action is been examining.  

Lorenz model                                                                                2-scale Lorenz model 


