## interaction on TC forecast: A case study of typhoon Fanapi (2010)

International workshop on coupled data assimilation, 2016

Kuan-Jen Lin<sup>1</sup>, Shu-Chih Yang<sup>1</sup> and Shuyi S. Chen<sup>2</sup>

<sup>1</sup> Dep. of Atmospheric Science, National Central Univ., Taiwan

<sup>2</sup> Rosenstiel School of Marine and Atmospheric Science, Univ. of Miami, USA



#### Introduction

- Air-sea interaction plays an important role in TC development
  - Ocean provides energy for TC
  - The TC-induced cold wake acts as a break to prevent over-intensification
- The TC-ocean coupled effect becomes more essential when there are ocean eddies
- The air-sea interaction is generally believed to have larger impact on TC intensity, but less impact on TC track
- In the eddy-rich WNP, few studies have focus on the TC ensemble prediction using a high-resolution coupled model.

Investigate the TC-ocean interaction in typhoon Fanapi (2010) using high-resolution coupled ensemble forecast



#### **Experiment setup**

WRF-LETKF DA system (Yang et al. 2013, Lin et al. 2016)

- Advanced Research WRF (ARW) V3.6.1
  - ✓ Nested domain 12/4/1.33(no DA) km, 36 layers
- Observations:
  - ✓ sound, ground station, airep, buoy, AMV, JTWC's MSLP, dropsonde (ITOP), synthetic wind profile (to spin-up vortex)



0000UTC 15

0000UTC 16

0

**°**0

24°N

22°N

20°N

18°N

130 2

0000UTC 15 22°N

2010 凡那比 (FANAPI)

6 強烈戰風(Vnax>=51.0m/s) 6 中度戰風(Vnax32.7-50.9m/s) 6 経度戰風(Vnax17.2-32.6m/s) ⊗ 共学社気炎星(Vnax<17.2m/s)</p>



#### **University of Miami Coupled Model (UMCM)**



### Uncoupled (UA) forecast result



Max 75%

25%

Median

Ensemble mean

### HYCOM IC at 0000UTC 16 Sep. 2010



### Difference between UA & A Ciff. in mean forecast



Ens. forecast mean (solid) Ensemble spread (dashed)

- Track difference:
  40 km after 72h, 20 km std.
- Size difference:
  25 km after 72h, 20 km std.
- MSLP difference:
  16 hPa after 72h, 10 hPa std.
- MWS difference:
  10 m/s after 72h, 8 m/s std.

TCs become too weak!!

# Track difference in zonal and meridional direction



Ensemble members Diff. in mean forecast Ens. forecast mean (solid) Ensemble spread (dashed)

# Large displacement VS. Small displacement



# Why does the track ensemble from AO deflect to the north?

Characteristics of the TCs with larger northward track deflection after coupled with ocean.

- Large vertical shear in the environment
- Fast moving speed
- Smaller size and weaker intensity

### Why AO deflect to the north? (1) height of TC development



## Why AO deflect to the north? (2) beta effect

Bender et al. (1993): Air-sea interaction has weaken the TC at all radius that will alters the orientation of beta gyres and thus affects the beta drift.

#### Westward tracks turn more to the north.





After coupled with ocean, TC become smaller

# Coupled effect increases intensity variability in TC simulation



### Summary

- As pointed out in previous studies, the TC-ocean coupled effect has a strong impact on TC development.(TC become smaller, weaker and more asymmetry)
- Results show that the coupled effect can modulate the TC track. (contribute to 20% operational forecast uncertainty)
  - (1) Interaction between TC and environmental flow; (2) Beta effect
- Impact of air-sea interaction on TC development :

   Ocean provides energy for TC
   The TC-induced cold wake acts as a break to prevent over-intensification
   Modulate how TC interacts with its environment
   Ocean indirect effect
- The coupled effect seems to degrade the performance of TC intensity forecast. However, the atmosphere-ocean conditions are not well coupled initially: over-intensified TC (from uncoupled model) + cold eddy!

A more balanced coupled states should be constructed through coupled DA!!

### Thank you!!

