Sea Ice Data Assimilation for Coupled Prediction at Environment and Climate Change Canada

International Workshop on Coupled Data Assimilation
Toulouse, France

Mark Buehner, Alain Caya, Anna Shlyaeva, Greg Smith
Meteorological Research Division

Tom Carrieres, Lynn Pogson, Michael Ross
Marine and Ice Services Division

18-21 October 2016
Contents

• Regional Ice Prediction System
 – System overview
 – Recent addition of new observations

• Ensemble covariances for strongly coupled assimilation

• Initialization of global coupled forecasts

• Conclusions
Regional Ice Prediction System
Originally created for supporting operational ice service

- **RIPS v2.2.1:**
 - ~ 5.0 km resolution
 - 4 analyses and forecasts per day
- **Analysis system** (Buehner et al. 2016)
 - estimates total ice concentration and analysis error stddev
 - background = analysis 6 hours earlier
 - observation types assimilated:
 - CIS image analyses, CIS daily and regional ice charts, lake bulletins
 - SSM/I, SSM/IS (3 satellites), AMSR2, ASCAT, AVHRR
 - ice removed where SST > 4°C
 - ice field corrected where analysis-error is high

1768 × 1618 grid points
Forecast system

- CICE sea ice model coupled with NEMO
- Subset of ORCA grid, 1/12° spacing
- Spectral nudging of ocean T&S to Global Ice Ocean Prediction System (in lieu of ocean assimilation)
- 48 hour forecasts
- Lemieux et al. (2014) for more details

1580×1817 grid points
Observation footprints

SSM/IS
58 km

SSM/I
55 km

ASCAT
50 km

AMSR2
22 km

AVHRR
5.5 km

ice charts
5 km

Observations must be rejected if footprint touches land, removing many obs near coast and in narrow channels.

Page 5 – November-18-16
Correction where $\sigma_a \geq 0.6$
Passive microwave data
SSMI, SSMIS, AMSR2

- **Assimilation:**
 - Ice concentration from NASA Team 2 (NT2) retrieval algorithm
 - Use "footprint" observation operator that aggregates gridded ice concentration over the larger footprint of instrument

- **Reject data when:**
 - Surface Air Temperature above 0°C, to reduce bias
 - Retrieved ice concentration is not zero AND
 - Sea Surface Temperature (SST) is above 4°C OR
 - Historical frequency of occurrence is 0 OR
 - Wind filter: Wind speed > 25 knots

- **Background check:**
 - Reject entire observation swath with bad/corrupted data (based on average RMS difference with background state)
Effect of wind filter on the sea ice analysis

No wind filter for SSMI(S)

With wind filter for SSMI(S)
High-resolution AVHRR data

Developed an improved algorithm to filter out most clouds

Developed a simple classification: ice / water / ambiguous / thin cloud
Example: 2011-08-05 16Z Western Arctic

(after thick cloud removed)

Ice concentration from CIS image analysis
Example: 2011-08-05 16Z Western Arctic
(after thick cloud removed)

Ice concentration from CIS image analysis

- Most tests done assimilating *Ice* as 100% concentration and *Water* as 0%
- Slightly improved when *Ice* assimilated as:
 - 85% when background concentration < 85%
 - Otherwise, rejected (background already consistent with observations)
Retrieval of Ice and Open water from AVHRR data

Number of AVHRR retrievals: Ice and open water

AVHRR retrievals: Total proportion correct (relative to IMS)
Impact of AVHRR data on the ice concentration analysis

Cape Farewell
21 June 2013

Danish (DMI) Ice Chart

Without AVHRR

With AVHRR
Runs from 2012-09-01 to 2013-12-31

- **RIPS 2.1.1**: control run

- **RIPS 2.2.1**: control run
 + assimilation of CIS regional charts data
 + assimilation of AMSR2 data
 + assimilation of AVHRR data (ice / open water)
 + wind filter on all passive microwave data
Impact of CIS REG (2012/09/01 – 2013/12/31)

Proportion Correct Total (for GL): (RIPS 2.1.2) - (RIPS 2.1.1)
Impact of AMSR2 data (2012/09/01 – 2013/12/31)

Proportion Correct Total (for GL): (RIPS 2.1.3) - (RIPS 2.1.2)

65°N

Improved

Degraded
Impact of AVHRR (2012/09/01 – 2013/12/31)

Proportion Correct Total (for GL): (RIPS 2.2.1) - (RIPS 2.2)
Ice concentration

- Bias and Stddev vs. NIC ice charts
Summary

• Numerous types of sea ice concentration observations are assimilated, most have own particular limitation

• Assimilating higher resolution obs (small footprint) improves analyses near coasts, in narrow passages

• Future: Incorporate forecast model in the assimilation cycle AND assimilate sea ice thickness (e.g. SMOS)

• Work towards coupled assimilation to better use sea ice observations to correct ocean and atmosphere:
 – Few ocean and atmospheric obs near sea ice
 – Lack of ice-ocean-atmosphere consistency can significantly degrade subsequent forecasts
Motivation to use Ice-Ocean Ensembles
(Shlyaeva et al. 2016, QJRMS)

• Provide an estimate of the uncertainty in the analysis and background/forecast states
• Improve assimilation with coupled ensemble-based ice-ocean background-error covariances
• Sea ice covariances have strong heterogeneity and important cross-covariances with ocean and atmosphere
• CICE sea ice model and simple mixed layer ocean model
First step: Ensemble of 3DVars (static B)

- Use ensemble atmospheric forecasts for forcing
- Perturb SST and mixed layer depth with NMC-like method
- Randomly perturb ocean current velocity

![Diagram of ensemble forecasting process]

Ensemble forecasts

Analyses $x^{a(i)}, i = 1: N_{ens}$

Perturbed observations $y^{o(i)}, i = 1: N_{ens}$

Backgrounds $x^{b(i)}, i = 1: N_{ens}$

Ensemble analyses

Ensemble B

Static B

R

Obs, y^o
Model biases prevent spread-skill consistency

- Problem 1: model doesn’t represent fast ice

 Canadian Arctic Archipelago, July 2011

- Problem 2: model bias introduced through biases in atmospheric and ocean forcing (SST, currents, winds)
Extreme sea ice model error parametrization (a temporary measure)

• 21 ensemble members:
 – 7 members: full CICE model
 – 7 members: CICE dynamics only
 – 7 members: CICE thermodynamics only

• Motivation
 – Dynamics: 1/3 of ensemble members don’t move: increased ensemble spread in the ‘ice shouldn’t move, but it’s moving’ case
 – Thermodynamics: 1/3 of ensemble members don’t melt/freeze: increased ensemble spread in the case of SST bias
Ensemble of 3DVars experiment

- Experiment June 8, 2011 – September 30, 2011
- Obs perturbed with state-dependent correlated errors (largest perturbations for intermediate concentrations)
- Verification based on CIS daily ice charts (available for different regions)
Background ensemble spread and RMSE of ensemble mean time series

- Statistics averaged over Foxe Basin ice charts for ice points with 10%-90% ice concentration

Full ensemble vs 7 members using full model

Extreme model error parametrization:

- Improves consistency between ensemble spread and error of ensemble mean (similar growth rates during forecast)
Time-averaged ensemble spread and RMSE maps

Average observed ice concentration (in daily ice charts)

RMSE of ensemble mean

Ensemble spread
EnVar: Single observation experiment

Observation=55%; Background=30%

Left: Background ice concentration

Using static covariances (10 km lengthscale)

Using ensemble covariances (50 km localization distance)
EnVar ice concentration analysis increment example (July 18, 2011)

Using static covariances (10 km lengthscale)

Using ensemble covariances (50 km localization distance)

Sharper and stronger increments close to the ice edge in the ensemble covariances case
EnVar ice concentration analysis example (July 18, 2011)

Using static covariances

Using ensemble covariances

Less negative ice concentration artefacts in analysis in the ensemble covariances case
EnVar analysis example: updating unobserved variables

Background ice concentration field

Ice concentration increment

Ice thickness increment, meters

SST increment, degrees
Global Coupled Medium-range Deterministic Forecasts

• Running since 8 July 2016
 – GDPS coupled to GIOPS
 – Fully-coupled A-I-O, 25km(A)-1/4deg(I-O),
 – 10 day fcst (2 per day)
Global Ice-Ocean Prediction System

Dorina Surcel Colan, Yimin Liu, Matt Reszka, Francois Roy, Barbara Winter …

- Produces daily ice-ocean analyses and 10 day forecasts

- Mercator Ocean Assimilation System (SAM2):
 - Sea surface temperature
 - Temperature and salinity profiles
 - Sea level anomaly from satellite altimeters

- 3DVar ice analysis
 - Similar to regional ice analysis
 - Combined with background state

Smith et al., QJRMS, 2015
Impact of a dynamic ice cover on coupled forecasts over the Beaufort Sea

Forecast from global coupled model (GEM-NEMO-CICE; 33km-15km resolution)

R. Muncaster, F. Roy, J.-M. Belanger
Impact of a dynamic ice cover on coupled forecasts over the Beaufort Sea

- Coastal polynya formation sensitive to:
 - Atmosphere-ice and ice-ocean stresses, ice thicknesses, landfast ice parameterization

Difference in ice fraction (CPL-UNCPL) Difference in 2m temperature

Forecast from global coupled model (GEM-NEMO-CICE; 33km-15km resolution)

R. Muncaster, F. Roy, J.-M. Belanger
Coupled Global Forecast Trials

J-M Belanger, F Roy, …

Evaluation of summer trials
- Verification against ERA-Interim for geopotential height at 850hPa over Asia

Statistically significant STD reduction

Smaller standard deviation

10% reduction at 120hr

Asian region

Uncoupled

Coupled
Improvement in GIOPS v1.1 (June 2014)

Under-ice SST assimilation:
• Set: SST obs=freezing point temperature, if IC>20%
• Improved under-ice SST assimilation substantially reduces differences with SST analysis

Mean differences for NH summer 2011
Blending with 3DVAR ice analyses

CICE requires Ice Thickness Distribution

- Method 1: Rescale thickness Distribution (RED)
- Method 2: Rescale Forecast Tendency (RFT)
- Use of RFT results in a smaller impact on total ice volume

Thought experiment

Total conc.

Previous anl: 100%
Background: 50%
Analysis: 100%
RED: 100%
RFT: 100%
Conclusions

• Ice concentration analysis for initializing coupled forecasts should ensure consistency between analyses:
 – SST adjusted when sea ice introduced by assimilation
 – Complete Ice Thickness Distribution adjusted to match ice concentration analysis

• Other simple approaches possible: e.g. correcting winds and currents by assimilating ice drift observations (Barth et al. 2015) – assumes these are primary error sources

• Work towards weakly coupled DA, then a simple way to start strongly coupled…

• … in the context of high-resolution deterministic systems (EnVar) that rely on lower resolution ensembles (EnKF)
Sea Ice DA and Prediction

Some interesting aspects

- Ice concentration well observed by many types of sensors, though with limitations in summer, near land, thin ice, from high winds.
- Ice drift well observed, from sequential satellite images, but challenge knowing what to correct: winds, currents, drag coeffs, ice strength, etc.
- Thickness less well observed, but important for atm-ocean interaction and longer term prediction.
- Ocean (SST, currents) and atmosphere (winds, air temperature) errors can dominate ice forecast errors, both poorly observed near ice.
- Simple “coupled” approaches can help a lot:
 - Ice obs used to impose consistent SST, correct winds/currents
 - Air temperature and winds used for ice obs QC
- Linear approaches for strong coupling may not always work, e.g. near freezing point, creation of ridges when ice fails in compression.
Coupling Method

Same method used by Gulf of St. Lawrence, Great Lakes, GDPS and Seasonal Systems

- Coupling every timestep
- Calculate fluxes on fine-scale grid and aggregate

Jean-Marc Belanger, Francois Roy, Natacha Bernier

GEM (Atmospheric Model)

Flux Coupling via GOSSIP socket server

CICE (Ice Model)

NEMO (Ocean Model)

NAO

ShA

LH

TA

TA

ShA

LH

LW

LW

SW

SW

U10

NT

LW

SW

PR

Td

Ua

O

CICE4**

GEM4

NEMO3.1

downloads from NEMO

coupled with GEM

calculates fluxes on fine-scale grid

Fluxes are coupled and aggregated
An Inverse Method for Tracking Ice Motion in the Marginal Ice Zone Using Sequential Satellite Images

MARK BUEHNER AND KEITH R. THOMPSON
Oceanography Department, Dalhousie University, Halifax, Nova Scotia, Canada

INGRID PETERSON
Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

(Manuscript received 12 September 1996, in final form 17 April 1997)