Coupling Radiative Transfer Observation Operator with Land Surface Model for Assimilating Microwave Tb over India

¹Akhilesh S. Nair and ²J. Indu

^{1,} Ph.D Student, Dept. of Civil Engg., IIT Bombay ^{2,} Assistant Professor, Dept. of Civil Engg., IIT Bombay

Outline

- Motivation and Research objective
- Methodology
- Results from previous DA
- Plan for proposed Alternative
- Future work

Motivation and research objective

- INDIA:- varied topographic distribution involving deserts along the Northwest (Thar Desert), snow clad mountains in the North (Himalaya), High Plateau region (Tibetan Plateau) in east.
- Land Surface: Boundary conditions for near surface atmosphere (Lowest atmospheric conditions).
- Can we improve the land surface initial states using Remote Sensing Data.
- Research Objective :- To improve Land surface initial state using Microwave Remote sensing data products.

Why Soil Moisture ?

LETTER

doi:10.1038/nature11377

Afternoon rain more likely over drier soils

Christopher M. Taylor¹, Richard A. M. de Jeu², Françoise Guichard³, Phil P. Harris¹ & Wouter A. Dorigo⁴

REPORTS Regions of Strong Coupling Between Soil Moisture and Precipitation

The GLACE Team: Randal D. Koster,^{1*} Paul A. Dirmeyer,² Zhichang Guo,² Gordon Bonan,³ Edmond Chan,⁴ Peter Cox,⁵ C. T. Gordon,⁶ Shinjiro Kanae,⁷ Eva Kowalczyk,⁸ David Lawrence,⁹ Ping Liu,¹⁰ Cheng-Hsuan Lu,¹¹ Sergey Malyshev,¹² Bryant McAvaney,¹³ Ken Mitchell,¹¹ David Mocko,¹⁰ Taikan Oki,¹⁴ Keith Oleson,³ Andrew Pitman,¹⁵ Y. C. Sud,¹ Christopher M. Taylor,¹⁶ Diana Verseghy,⁴ Ratko Vasic,¹⁷

Land-atmosphere coupling strength (JJA), averaged across AGCMs

Study Region, with illustration of the UMD landcover classification and location of two subdomain. (AVHRR 1981-1994)

RESULTS

[The results being shown are from the manuscript (which is under review) being submitted to an international journal.]

CLAY FRACTION*100

Monthly Mean SSM (JJAS, 2011)

(h) (j) (k) Monthly mean surface soil moisture for each of the JJAS months of 2011 from (a – d) LPRM soil moisture, (e-h) DA results and (h-k) GLDAS

Taylor Plots

Domain 2

Why Microwave Brightness Temperature (Tb)

- Passive Microwave (PMW) remote sensing at lower frequency are particularly sensitive to soil moisture than its physical temp.
- The low frequency channels are also well known for low interference from vegetation, atmosphere and clouds.
- Current global remote sensing soil moisture products have considerable biases in many regions, due to uncertainties in specified parameters .
- CHALLENGES !!!

Optimization...

Parameters to be Opimized:-

Five Parameters:-

- 1. Parameters describing vegetation scattering of microwaves.
- 2. Parameter describing surface roughness and its angular dependence.
- Particle Swath Optimization (PSO; Kennedy and Eberhart 1995)
- It iteratively minimizes predefined objective function.
- Algorithm modifies the parameter sets within the predefined range.

Simulation Results

150

20 40 60 80 (f)

- To couple this land data assimilation system to a numerical weather forecast system .
- To utilize the improved soil moisture estimation from DA for drought /flood risk estimation.
- To investigate the impact of the error characterization on assimilation efficiency.

