

Turbulence en présence de convection

Jean-François Guérémy jean-francois.gueremy@meteo.fr

Contexte

Nébulosité haute trop élevée en présence de convection.

 $N_{tot} = max(N_t, N_c)$; N_t surtout car N_c faible en haut (max 40 % à la base et décroissant avec l'altitude) et N_t dépend de la turbulence (Sommeria and Deardorff (1977) et Bougeault (1981)):

Variable s distance locale à saturation de l'état thermodynamique $s = \frac{a}{2}(q_w - \alpha_1 \theta_i)$

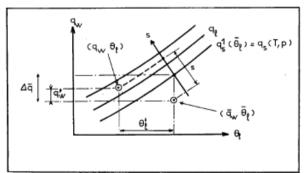


Fig. 1. Saturation curve and the isolines q_l = Constant plotted on a (θ_l, q_w) diagram. They are parallel, almost straight lines, and q_l depends only on the variable s, which is measured on a perpendicular axis.

et Q_1 écart à saturation à l'échelle de la maille $Q_1 = \frac{a\Delta \bar{q}}{2\sigma_s}$ avec $\Delta \bar{q} = \bar{q}_w - q_s(\bar{T}_l)$. Il y a condensation locale si $t = \frac{s}{\sigma_s} > -Q_1$. Pour la maille, $C_d = F_0(Q_1) = \int_{-Q_1}^{+\infty} G(t) dt$ et $\frac{\bar{q}_l}{2\sigma_s} = F_1(Q_1) = \int_{-Q_1}^{+\infty} (Q_1 + t) G(t) dt$

la distribution G(t) est exponentielle pour Q1 faible (Cu) et gaussienne pour Q1 élevé (Sc). σ_s est fonction des

gradients verticaux de q_{\downarrow} et θ_{\vert} et de l'ECT e_{\downarrow} .

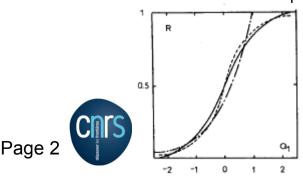
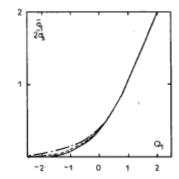
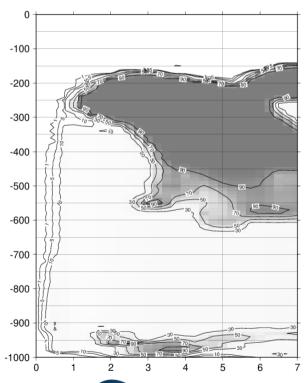
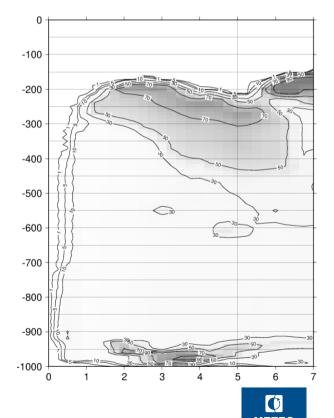



Fig. 3. Parameterized cloud fraction. (a) Q_1 ranges from -2 to +2, (b) Q_1 ranges from -5 to -1. Solid line: Gaussian model (15); dashed line: exponential model (16); dash-dotted line: skewed model (17).

AMA 12/02/2018




Formulations

 $\sigma_{_{S}} \text{ est fonction des gradients verticaux de } q_{_{t}} \text{ et } \theta_{_{I}} \text{ et de l'ECT } e_{_{t}} \text{ : } \sigma_{_{s}} = \frac{a}{2} \sqrt{\mathbb{C} (L_{m})^{2} \phi_{3}} \left| \frac{\partial \overline{q}_{t}}{\partial z} - \alpha_{1} \frac{\partial \overline{\theta}_{l}}{\partial z} \right|$ avec $\sqrt{\mathbb{C} (L_{m})^{2} \phi_{3}} = \frac{1}{\sqrt{C_{\epsilon_{\theta}}}} \sqrt{\frac{L_{m} K_{T}}{\sqrt{\overline{\epsilon}}}} \text{ et } K_{T} = C_{\theta} L_{m} \sqrt{\overline{\epsilon}} \phi_{3}.$

<u>Première formulation approximative</u>: Valeur seuil minimale pour σ_s , présence de condensat convectif et p<650hPa et $\Delta q>0$

Évolution temporelle de la Nébulosité ; à gauche sans la correction, à droite avec

Formulations

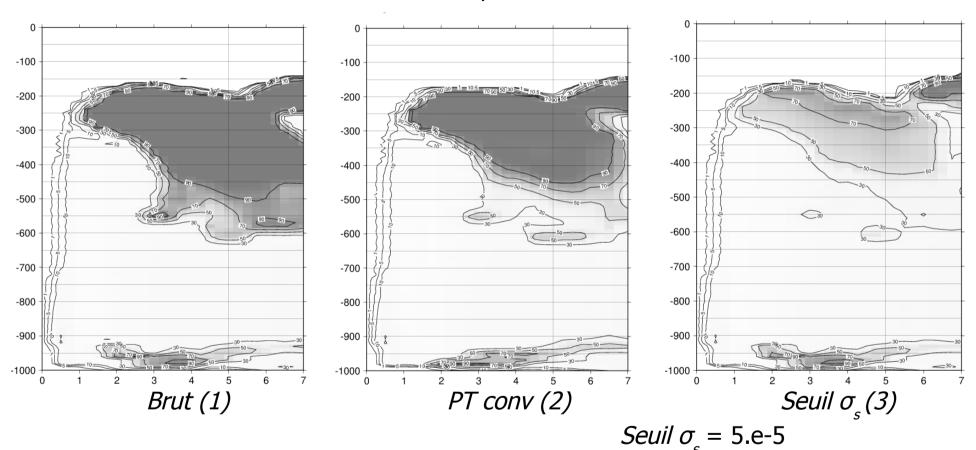
<u>Seconde formulation</u>: Ajout de termes de production thermique et dynamique provenant de la convection PCMT dans l'équation d'évolution de e_..

$$\frac{\partial \overline{e}}{\partial t} = \left[\text{Advect.} \right] + \text{Diff}_{\text{vert}} + P_{\text{dyn.}} + P_{\text{ther.}} - D \text{iss} \quad \text{avec} \quad P_{\text{dyn.}} = - \left[\overline{u'w'} \frac{\partial \, \overline{u}}{\partial z} + \overline{v'w'} \frac{\partial \, \overline{v}}{\partial z} \right] \quad \text{et} \quad P_{\text{ther.}} = \beta \, \overline{w'\theta'_{vl}} \, , \quad \overline{\theta}_{vl} = \overline{\theta} \left(1 + 0.608 \, \overline{q}_v - \overline{q}_c \right) \, , \quad \beta = \frac{g}{\overline{\theta}} \, . \quad \beta = \frac{g}{\overline{\theta}} \,$$

Dans le schéma de convection sont calculés les flux de transport pour le vent et les variables thermodynamiques :

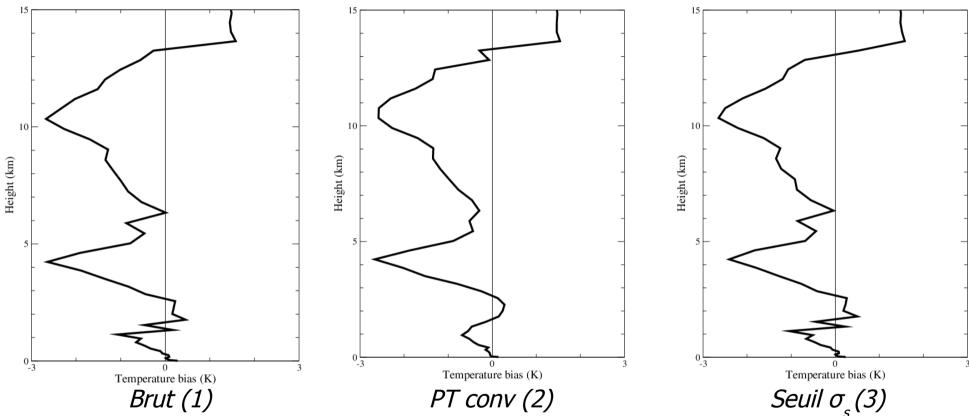
$$\overline{\omega'\chi'} = -M(\chi_c - \bar{\chi})$$
 avec $M = -\alpha\sigma\omega_c$, soit $\overline{w'\chi'} = \frac{1}{\rho g}M(\chi_c - \bar{\chi})$ pour $X = u$, v et θ_{vl} ici.

---> Ainsi, il est possible d'ajouter aux termes turbulents de production thermique et dynamique, une part (à déterminer) des termes convectifs de production calculés à l'aide de ces flux convectifs de transport. [Déjà codé pour la CVPP KFB et EDKF].


---> $\beta \overline{w'\theta'_{vl}}$ calculé dans PCMT.

Résultats cas 1D TOGA (Bechtold et al., 2000)

Évolution temporelle de la nébulosité

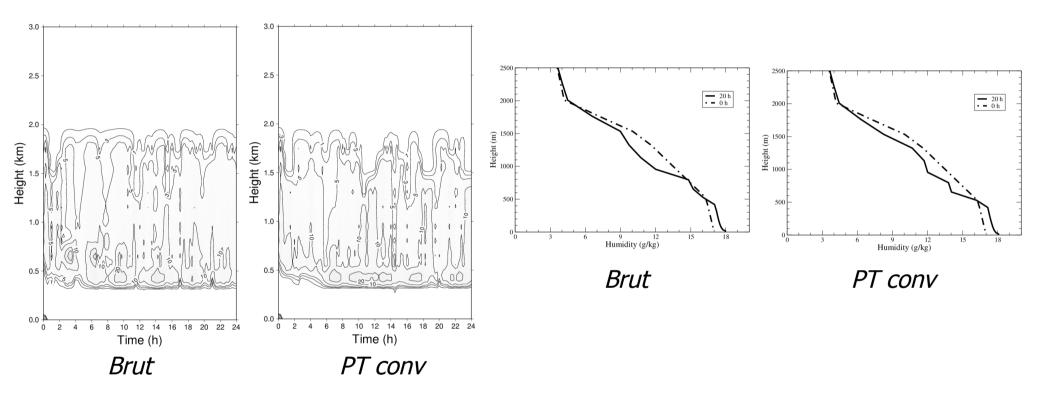

En fin de simulation (heure 7): A 950 hpa, PT turb = 1.e-3 m²s⁻³ , PT conv = 1.e-3 m²s⁻³ , σ_s (1)= 3.e-9 , σ_s (1)= 3.e-9

A 500 hpa, PT turb = -1.e-11 m²s⁻³, PT conv = 3.e-3 m²s⁻³, $\sigma_c(1)$ = 1.e-6, $\sigma_c(1)$ = 1.3e-5

Résultats

Biais de température en fin de simulation (heure 7) par rapport au CRM de référence

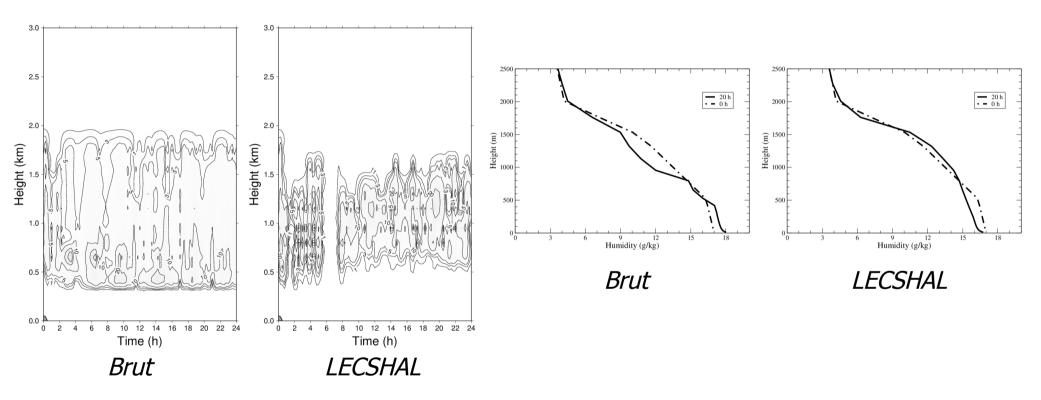
Profil plus lisse avec la prise en compte de la PT conv



Résultats cas 1D BOMEX (Siebesma et al., 1995)

Évolution temporelle de la nébulosité

---- Profil d'humidité spécifique au bout de 20h



Résultats

Évolution temporelle de la nébulosité ----- Profil d'humidité spécifique au bout de 20h

LECSHAL : longueur de mélange = épaisseur de la convection

Résultats similaires avec LECDEEP : longueur de mélange = épaisseur de la convection limitée à 1km (par défaut)

