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Introduction

inputs −→ model −→ output

X1
·
·
·
Xd


−→ M −→ Y =M(X1, . . . ,Xd)

Specificities:
I the modelM is expensive to evaluate;
I the inputs space dimension is high d >> 1.

In a calibration framework, one may aim at fixing non influential
input variables.

Sensitivity analysis can help in detecting "low-effective dimension".
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Introduction

Introduction
Many examples in different application fields:
B Application to a biogeochemical model:
ecosystem model (MODECOGeL) of the Ligurian Sea

MODECOGeL is a 1D coupled hydrodynamical-biological model:
I hydrodynamic model: 1-D vertical simplification of primitive

equations for the ocean, 5 state variables;
I ecosystem model: marine biogeochemistry, 12 biological state

variables.
. 87 scalar input parameters;
. spatio-temporal outputs.

3/ 41



Introduction

Introduction

Global Sensitivity Analysis
The framework
A global screening procedure: Morris screening procedure
[Morris, 1991]
Global sensitivity measures
Estimation procedure

Extension to vectorial outputs

Sensitivity analysis and active subspaces

Implementation with R

Conclusion, perspectives
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Global Sensitivity Analysis
The framework

Context:

M :
{

Rd → R
x 7→ y =M(x1, . . . , xd)

Aim: to determine the way the output of the model reacts to
variations of the inputs parameters, to fix non influential input
parameters.

Several analyses are possible:

. qualitative analyses: are there non linear effects? interactions?
screening approaches.
. quantitative analyses: factors’ hierarchization, statistical
hypothesis testing: e.g., H0 "the i th factor has no influence on the
output". sensitivity measures.
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Global Sensitivity Analysis
The framework

Introduction
Various approaches for quantitative sensitivity:
Local approaches:
M(x) ≈M(x0) +

∑d
i=1

(
∂M
∂xi

)
x0

(xi − x0i ) (Taylor approximation).

First order sensitivity index for input i :
(
∂M
∂xi

)
x0
.

Pros : Low computational cost even for large d
Cons : local approaches, not well-suited for highly nonlinear models
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Global Sensitivity Analysis
The framework

The paradigm of Global Sensitivity Analysis (GSA):
The uncertainty on the inputs is modeled by a probability
distribution, from experts’ knowledge, or from observations, . . .
e.g., if the inputs are independent, this probability distribution is
characterized by its marginals.

Figure: unimodal distribution (left), bimodal distribution (right)

Figure: bivariate distribution.
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Global Sensitivity Analysis
A global screening procedure: Morris screening procedure [Morris, 1991]

Let Y =M(X1, . . . ,Xd), with X ∼ U
(

[0, 1]d
)
.

We consider the discretization grid: Ω :=
{
0, 1

p−1 , . . . , 1
}d

.

For ∆ a multiple of 1/(p − 1), for i = 1, . . . , d , define

Ω∆
i := {x ∈ Ω s.t. (x1, . . . , xi−1, xi + ∆, xi+1, . . . , xd) ∈ Ω} .

The procedure is OAT (One At a Time): we vary the input
parameters one by one.
Elementary effects for input factor Xi

Let x ∈ Ω∆
i ,

di(x) = 1
∆ {M(x1, . . . , xi−1, xi + ∆, xi+1, . . . , xd)−M(x)} .

For each input, there are pd−1(p −∆(p − 1)) elementary effects to
be computed.
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Global Sensitivity Analysis
A global screening procedure: Morris screening procedure [Morris, 1991]

I we draw uniformly a sample of size m on Ω∆
i : x1, . . . , xm;

I we compute di(xj), j = 1, . . . ,m, i = 1, . . . , d ;
I we compute

µi = 1
m
∑m

j=1 di(xj)

σ2i = 1
m
∑m

j=1(di(xj)− µi)2 .

I Interpretation:

"small" σ2i "high" σ2i

"small" |µi | neglectable non linearities and/or interactions

"high" |µi | influent non linearities and/or interactions

The efficiency of the method "number of elementary effects to be
computed / number of runs" is equal to (md)/(2md) = 1/2.

Morris (91) also propose a tricky design of experiment which yields
an efficiency equal to d/(d + 1).
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Global Sensitivity Analysis
A global screening procedure: Morris screening procedure [Morris, 1991]

Morris’ design, projection in two-dimension (X1,X2), with p = 6,
∆ = p/[2(p − 1)] = 3/5, N = r × (d + 1) with r = 2 and d = 2.

Morris’ design in three-dimension with p = 8,
∆ = p/[2(p − 1)] = 4/7, N = r × (d + 1) with r = 10 and d = 3.
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Global Sensitivity Analysis
A global screening procedure: Morris screening procedure [Morris, 1991]

A toy example
Reaction-diffusion-advection equation with Dirichlet boundary
conditions :

∂u
∂t = −r .u − a ∂u∂x + λ∂

2u
∂x2 + f x ∈ [0, L], t ∈ [0,T ]

u(x = 0, t) = Ψ1(t) t ∈ [0,T ]
u(x = L, t) = Ψ2(t) t ∈ [0,T ]
u(x , t = 0) = g(x) x ∈ (0, L) .

Quantity of Interest: energy norm of the solution at time t = T .

Sensitivity of the QoI to parameters (a, r , λ)? The uncertainty on
input parameters is modeled by independent random variables:
a, r ∼ U ([0.4, 0.6]), λ ∼ U ([0.04, 0.06]).

Adams-Moulton scheme with 2 steps, sample of size 213.
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Global Sensitivity Analysis
A global screening procedure: Morris screening procedure [Morris, 1991]

A toy example

Figure: Morris screening with p = 50, ∆ = 25/49.

Sa = 0.0188, Sλ = 0.7299, Sr = 0.2488, Sa + Sλ + Sr = 0.988.
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Global Sensitivity Analysis
Global sensitivity measures

Sensitivity measures based on linear regression:
Let X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xd). Recall that
Y =M(X1, . . . ,Xd).

I Linear correlation

ρi = ρ (Xi ,Y ) = Cov(Xi ,Y )√
Var(Xi)

√
Var(Y )

·

If Y =
∑d

i=1 βiXi , and if inputs are independent,∑d
i=1 ρ

2 (Xi ,Y ) = 1.
I Partial correlation

If inputs are correlated , it might be more suitable to compute

PCCi = PCC (Xi ,Y ) = ρ
(
Y − Ŷ (X−i),Xi − X̂i(X−i)

)
·

with Ŷ (X−i) the regression of Y on X−i and X̂i(X−i) the one
of Xi on X−i .
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Global Sensitivity Analysis
Global sensitivity measures

Assessment of linear model?

Toy example : Y = 2X1 + 3X2
2 + 5, Xi ∼ U([0, 1]), i = 1, 2, X1X2.
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We can approximate this model by a linear model :
Y = β1X1 + β2X2 + β0 + ε, ε ∼ N (0, σ2).

Learning sample : yk =M(x1,k , . . . , xd ,k), k = 1, . . . ,m

⇒ ŷ = β̂1x1 + β̂2x2 + β̂0 = 2.06x1 + 3.15x2 + 4.34.

Which measure to assess the fit of this model?
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Global Sensitivity Analysis
Global sensitivity measures

Coefficient R2

R2 = SCE
SCT =

∑m
k=1 (ŷk − y)2∑m
k=1 (yk − y)2

,

ŷk =
∑d

i=1 β̂ixi ,k , y = 1
m
∑m

k=1 yk .

Prediction error, e.g. cross-validation

1
m

∑m
k=1

(
ŷ−(k)
k − yk

)2
1
m
∑m

k=1 (yk − y)2
,

ŷk−(k) =
∑d

i=1 β̂
−(k)
i xi ,k , β̂−(k)

i inferred from

(yj , xj), j = 1, . . . , k − 1, k + 1, . . . ,m.
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Global Sensitivity Analysis
Global sensitivity measures

If the relationship input/output is no more linear but simply
monotonic, we work with ranks.

yk , xi ,k , k = 1, . . . ,m, i = 1, . . . , d

ri ,k rank of xi ,k in (xi ,1, . . . , xi ,m), rk rank of yk in (y1, . . . , ym)

• ρSi =
∑m

k=1(ri,k−r i )(rk−r)√∑m
k=1(ri,k−r i )2

√∑m
k=1(rk−r)2

• idem for pcci
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Global Sensitivity Analysis
Global sensitivity measures

We now focus on variance based sensitivity measures. We assume
Y ∈ R and Xi i.i.d. ∼ U ([0, 1]) (these assumptions are discussed
further).

In this part of the talk, inputs are assumed to be independent.

Towards Sobol’ sensitivity indices:

Does the output Y vary more or less when fixing one of its inputs?

Var (Y |Xi = xi), how to choose xi?

⇒ E [Var (Y |Xi)]

The smaller E [Var (Y |Xi)], the more influential the i th input, Xi .

From the total variance theorem,
Var(Y ) = Var [E (Y |Xi)] + E [Var (Y |Xi)]. Define the first-order
Sobol’ index associated to Xi as Si = Var [E (Y |Xi)] /Var[Y ].

The larger 0 ≤ Si ≤ 1, the more influential the i th input, Xi .
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Global Sensitivity Analysis
Global sensitivity measures

Remark: if Y =
∑d

i=1 βiXi , one gets Si = β2i Var[Xi ]/Var[Y ] = ρ2i ,
with ρi the linear correlation coefficient.

More generally, it is possible to define second-order,
third-order. . . Sobol’ indices.

Hoeffding decomposition ([Hoeffding, 1948, Sobol’, 1993])
M : [0, 1]d → R,

∫
[0,1]dM

2(x)dx <∞

M admits a unique decomposition of the form

M0 +
∑d

i=1Mi(xi) +
∑

1≤i<j≤dMi,j(xi , xj) + . . .+M1,...,d(x1, . . . , xd)
under the constraints

I M0 constant,
I ∀ 1 ≤ s ≤ d, ∀ 1 ≤ i1 < . . . < is ≤ d, ∀ 1 ≤ p ≤ s∫ 1

0 Mi1,...,is (xi1 , . . . , xis )dxip = 0
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Global Sensitivity Analysis
Global sensitivity measures

Consequences : M0 =
∫

[0,1]dM(x)dx and the terms in the
decomposition are orthogonal.

Variance decomposition : X1, . . . ,Xd i.i.d. ∼ U ([0, 1])

Y =M(X ) =M0 +
∑d

i=1Mi(Xi) + . . .+M1,...,d(X1, . . . ,Xd).

With the orthogonality constraints, we get:
I M0 = E(Y ),
I Mi(Xi) = E (Y |Xi)− E(Y ),
I i 6= j Mi,j(Xi ,Xj) = E (Y |Xi ,Xj)− E (Y |Xi)− E (Y |Xj) + E(Y ),
I . . .

E(Y −M0)2 = E (Y − E(Y ))2 = Var[Y ]
=
∑d

i=1 Var [Mi(Xi)] + . . .+ Var [M1,...,d(X1, . . . ,Xd)] .
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Global Sensitivity Analysis
Global sensitivity measures

First-order Sobol’ indices: ∀ i = 1, . . . , d

Si = Var (Mi(Xi))
Var(Y ) = Var [E (Y |Xi)]

Var(Y )

Second-order Sobol’ indices: ∀i 6= j = 1, . . . , d

Si,j = Var [Mi,j(Xi ,Xj)]
Var[Y ]

= Var [E (Y |Xi ,Xj)]− Var [E (Y |Xi)]− Var [E (Y |Xj)]
Var[Y ]

Higher-order Sobol’ indices . . . ∀u ⊂ {1, . . . , d}

Su = Var [Mu(Xu)]
Var[Y ] =

∑
v⊂u(−1)|u|−|v |Var [E (Y |Xv)]

Var[Y ]

−→ 1 =
∑d

i=1 Si +
∑

i 6=j Si,j + . . .+ S1,...,d
20/ 41



Global Sensitivity Analysis
Global sensitivity measures

Total-effect Sobol’ indices:
∀ i = 1, . . . , d Stot

i =
∑

u⊂{1,...,d} , u6=∅ , i∈u
Su

Example: d = 3, Stot
1 = S1 + S1,2 + S1,3 + S1,2,3.

Let X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xd). We have:

Stot
i = E [Var (Y |X−i)]

Var[Y ] = 1− Var [E (Y |X−i)]
Var[Y ]

More generally, ∀u ⊂ {1, . . . , d}, for X−u = (Xi , i /∈ u),

Stot
u = E [Var (Y |X−u)]

Var[Y ] = 1− Var [E (Y |X−u)]
Var[Y ]

=
∑

v⊂{1,...,d},v∩u6=∅
Sv · (1)
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Global Sensitivity Analysis
Global sensitivity measures

If the inputs are dependent, there exist some alternatives to
allocate parts of variance: hierarchical Hoeffding decomposition,
Shapley effects,. . .

Note that if we define, ∀u ⊂ {1, . . . , d}

Sdep
u = Cov (Mu(Xu),M(X))

Var (M(X)) ,

then Eq. (1) still holds true (see, e.g., [Hart and Gremaud, 2018])
with Su, Sv replaced by Sdep

u , Sdep
v .

If Stot
u is small, it is reasonable to propose a metamodel ofM

taking as inputs only the input parameters indexed by i /∈ u.

Hear, e.g., the SIAM Conference on UQ MiniSymposium Advances
in Global Sensitivity Analysis

https://www.pathlms.com/siam/courses/7376/sections/10632
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Global Sensitivity Analysis
Estimation procedure

Assume the input parameters are independent.

Let X1 and X2 be two independent copies of X.

For i = 1, . . . , d , we define:

Zi = (X 2
1 , . . .,X 2

i−1,X 1
i ,X 2

i+1, . . .,X 2
d )

Let Y =M(X1) and, for i = 1, . . . , d , Y i =M(Zi).

If the random vector X has independent components, then we
deduce:

Si = Cov
(
Y ,Y i)

Var[Y ] ·
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Global Sensitivity Analysis
Estimation procedure

For any i ∈ {1, . . . , d}, let X 1,j
i and X 2,j

i , j = 1, . . . , n be two
independent samples of size n of the parameter Xi .

We define:

X1,j = (X 1,j
1 , . . .,X 1,j

i−1,X
1,j
i ,X 1,j

i+1, . . .,X
1,j
d ) j = 1, . . . , n

Zi ,j = (X 2,j
1 , . . .,X 2,j

i−1,X
1,j
i ,X 2,j

i+1, . . .,X
2,j
d ) j = 1, . . . , n , i = 1, . . . , d

We evaluate the model (1 + d)n times:

Y j =M(X1,j) j = 1, . . . , n

Y i ,j =M(Zi ,j) j = 1, . . . , n , i = 1, . . . , d .
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Global Sensitivity Analysis
Estimation procedure

Monte Carlo estimator: [Monod et al., 2006, Janon et al., 2014]

Ŝi,n =

1
n

n∑
j=1

Y jY i,j −

(
1
n

n∑
j=1

Y j + Y i,j

2

)2

1
n

n∑
j=1

(Y j )2 + (Y i,j )2

2
−

(
1
n

n∑
j=1

Y j + Y i,j

2

)2

Total and higher order interaction indices can also be estimated.

Main issue: the cost is prohibitive.
• (1 + d)n model evaluations for all first-order Sobol’ indices;

• (
(d
2
)

+ 1)n for all second-order Sobol’ indices.

25/ 41



Global Sensitivity Analysis
Estimation procedure

Monte Carlo estimator: [Monod et al., 2006, Janon et al., 2014]
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Global Sensitivity Analysis
Estimation procedure

B with combinatorial tricks, a cost of (2d + 2)n model eval. for
double estimates of all first-order, second-order and total Sobol’
indices [Saltelli, 2002];

B with replicated orthogonal arrays, a cost of 2q2 model eval. for a
single estimate of all second-order, and q × q! estimates of all
first-order, with q ≥ d − 1 a prime number [Gilquin et al., 2018].

That cost may still be prohibitive, thus the necessity to learn a
metamodel, such as:
B polynomial chaos expansion (Bruno Sudret’s talk),
B Gaussian Process emulators (talks by Miguel Munoz Zuniga and
Daniel Williamson).

Procedure:
B learn the metamodel from a sample of moderate size
(xj , y j)j=1,...,n
B compute Sobol’ indices by running the metamodel.
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Extension to vectorial outputs

What about vectorial outputs [Lamboni et al., 2011]:
We assume Y ∈ Rp.

One defines, for i = 1, . . . , d

GSi =
p∑

k=1

Var[Yk ]∑p
j=1 Var[Yj ]

Si(Yk) .
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Extension to vectorial outputs

What about vectorial outputs [Lamboni et al., 2011]:
We assume Y ∈ Rp. Let Σ denote the variance-covariance matrix
of Y . The PCA decomposition of Y is based on the expansion

Σ =
p∑

k=1
µkvkvTk

with µ1 ≥ . . . ≥ µp the eigenvalues of Σ and v1, . . . , vp a set of
normalized and mutually orthogonal eigenvectors associated to
these eigenvalues. One has

Y = EY +
p∑

k=1

(
(Y − EY )Tvk

)
vk = EY +

p∑
k=1

hk vk .

One gets, for i = 1, . . . , d

GSi =
p∑

k=1

µk
trace (Σ)Si(hk) = trace(Ci)

trace(Σ)

with Ci the variance-covariance matrix of E (Y |Xi).
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Sensitivity analysis and active subspaces

"Globalized" local approaches: e.g., (1) EX
[
∂M
∂xi

∣∣∣
X

]
, or

(2) νi = EX

[(
∂M
∂xi

∣∣∣
X

)2]
.

Pros: it takes into account the inputs’ distribution, the cost is
independent of the dimension in case an adjoint is available .
Cons:

(1) & (2) are not enough discriminant

(2) is known as Derivative-based Global Sensitivity Measures , see
Sobol’ & Gresham (1995), Sobol’ & Kucherenko (2009). This
index is more appropriate for screening than for hierarchization (see
Lamboni et al., 2013).
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Link with active subspaces [Constantine and Diaz, 2017]:

Assume x ∼ U
(

[−1, 1]d
)
. Define ρ(x) = 2−d for x ∈ [−1, 1]d .

Active subspaces are based on the eigendecomposition of

H =
∫
∇M(x)∇M(x)Tρ(x)dx = WΛW T

with W = [w1, . . . ,wd ] the orthogonal matrix of eigenvectors, and
Λ = diag(λ1, . . . , λd) the diagonal matrix of eigenvalues in
decreasing order.

For any i = 1, . . . , d , one has Hi ,i = EX

[(
∂M
∂xi

∣∣∣∣
X

)2]
= νi .

One has

λi = wT
i H wi =

∫ (
∇M(x)Twi

)2
ρ(x)dx .

It implies [λi = 0 iffM is constant along the direction wi ].
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Dimension reduction:
Let 1 ≤ r ≤ d − 1. We define

Λ =
[

Λ1
Λ2

]
, W = [W1 W2],

where Λ1 contains the first r eigenvalues and W1 the
corresponding eigenvectors.
If λr+1, . . . , λd are sufficiently small, then it seems reasonable to
use a surrogateM(x) ≈ g(W T

1 x), with g : Rr → R .
One has

Stot
i ≤ 1

4π2Var(M) νi .

Let αi(r) =
∑r

j=1 λjw2
i ,j . Note that αi(r) ≤ αi(d) = νi .

Moreover,
Stot
i ≤ 1

4π2Var(M) (αi(r) + λr+1) .
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• It is possible to extend to non uniform distributions, as far as
Poincaré constants are known.

C(µi) is a Poincaré constant for µi if for any g such that∫
gdµi = 0, ∫

g2dµi ≤ C(µi)
∫

g ′2dµi .

• For the estimation procedure, automatic differentiation
algorithms may be used. The number of required function
evaluations still remains to be proportional to the number of
inputs. However, this dependence can be greatly reduced using an
approach based on algorithmic differentiation in the adjoint or
reverse mode.

• Thus, the νi , i = 1, . . . , d , may be computed for screening
purposes [Lamboni et al., 2013].

• These results may be extended to vectorial outputs.
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Implementation with R

With the R software, most of the methodologies presented above
are implemented in the package sensitivity.

See the link
https://cran.r-project.org/web/packages/sensitivity/
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MODECOGeL

• hydrodynamic model: 1-D vertical simplification of primitive
equations for the ocean, 5 state variables;
• ecosystem model: marine biogeochemistry, 12 biological state
variables.
Inputs/Outputs:
. 87 scalar input parameters;
. spatio-temporal outputs.

34/ 41



Implementation with R

Here the QoI is the annual maximum of surface chlorophyll concentration. We are
interested in the sensitivity of the QoI to many parameters, among which the
parameterization of excretion for bacteria, of grazing and ingestion for
mesozooplankton.

First-order versus Total-order sobol indices
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Unclosed second-order indices

The full set of second-order indices were estimated with 103 058 model runs, deployed
on a grid environment (see [Prieur et al., 2018] for more details).
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Conclusion, perspectives

Conclusion:
I GSA is a nice framework for independent inputs.
I However, the estimation of Sobol’ indices requires a large

number of model evaluations.
I DGSM (or active subspaces), even if less informative, provide

an alternative, at a lower cost.
I If one is interested in surrogate models, SA can be thought as

a dimension reduction procedure for approximation.
To go further:

I goal-oriented sensitivity measures, not necessarily based on
variance;

I handle some applications with high dimensional input space,
making use, e.g., of a grid deployment [Prieur et al., 2018];

I in situ estim., e.g., [Gilquin et al., 2016, Ribes et al., 2019];
I visualization in high dimension; ...
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Conclusion, perspectives

Thanks for your attention!
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