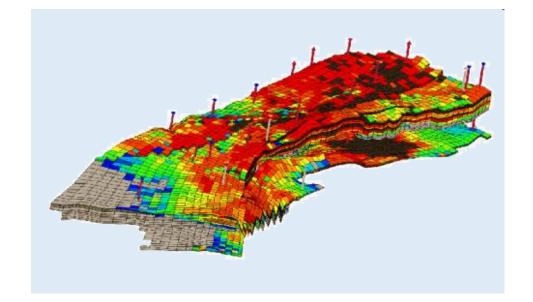
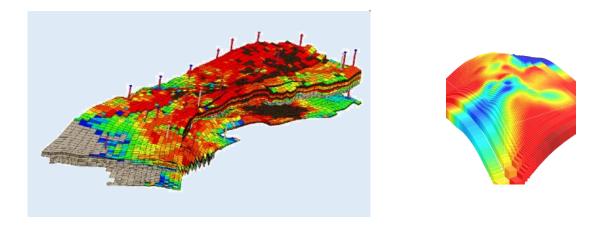
OPTIMIZATION AND BAYESIAN APPROACHES FOR MODEL CALIBRATION APPLICATION TO OIL AND GAS FIELD MANAGEMENT

Miguel Munoz Zuniga, Delphine Sinoquet from IFPEN département de mathématiques appliquées



OIL AND GAS FIELD MANAGEMENT

We are interested in the **forecast** of oil/gas production and Bottom Hole Pressure (BHP) of a petroleum reservoir



• We have at our disposal

- **Measured Data** on the field (i.e. production until a given time)
- A parametrized simulator of the petroleum reservoir

OPTIMIZATION AND BAYESIAN APPROACHES FOR MODEL CALIBRATION AND PREDICTION

Bayesian calibration + prediction via propagation

Quantify what information my uncertain observations give me on my calibration parameters Setimate **posterior distribution** of a reservoir model parameters from history data

Distribution/Sampling of New observation knowing old observations
Propagate the model parameters uncertainties on predictions

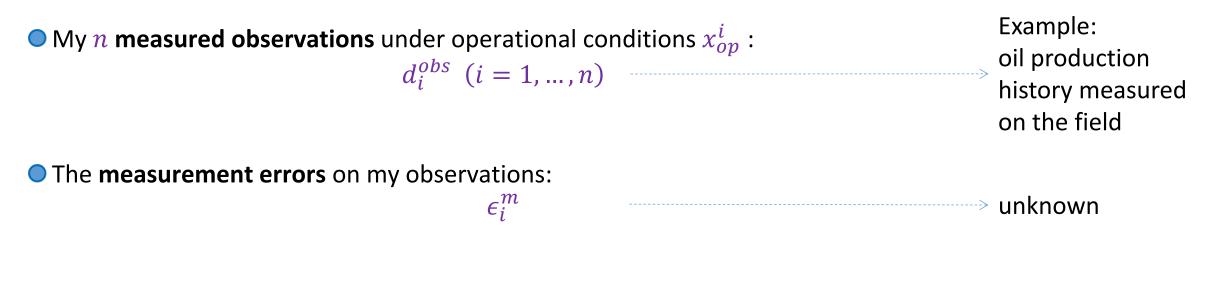
Extreme scenario prediction

Olinimize/Maximize (forecast production) subject to History Matching constraint

DATA AND ERRORS

• My n real physical responses of the experiment under given operational conditions xⁱ_{op}

$$d_i^{real} \ (i = 1, ..., n)$$
 Unseen



My Data : x_{op}^{i} , d_{i}^{obs} (i = 1, ..., n)

MODELLING DATA

Observational » model:

$$d_i^{obs} = d_i^{real} + \epsilon_i^m$$

• My simulator responses with **unknown optimal calibration** parameters x^* evaluated at operationnal conditions x_{op}^i :

 $G(x_{op}^i, x^*)$

• My simulator mimic exactly, or at best, the real physical phenomenon: $d_i^{real} = G(x_{op}^i, x^*) + \epsilon_i^{sim}$

Observational-simulated » model:

 $d_i^{obs} = G(x_{op}^i, x^*) + \epsilon_i$

with $\epsilon_i = \epsilon_i^m + \epsilon_i^{sim}$

STATISTICAL MODELLING

Observational-simulated » model

• Statistical modelling:
$$Q^{obs} = G(x_{op}^i, x^*) + \epsilon_i$$

Random variables

What we do not know and that we are going to model are : e and X Choice of

- **distribution** of the **error** ϵ
- A prior distribution on the calibration parameters X

• Knowing my observations what is the distribution of my calibration parameters

BAYESIAN CALIBRATION AND PREDICTION

Bayesian Calibration

$$p(X = x | D_i^{obs} = d_i^{obs}) \alpha \ p(D_i^{obs} = d_i^{obs} | X = x) p(X = x) \longrightarrow \text{ prior}$$

$$posterior$$

Bayesian Prediction model

$$D_{new} = G(x_{new}, X) + \epsilon$$

Theoretical prediction distribution

$$p(D_{new}|D_i^{obs} = d_i^{obs}) = \int p(D_{new}|X = x)p(X = x|D_i^{obs} = d_i^{obs})dx$$

PropagationMCMC* Sample of
$$X_i$$
 from
 $p(x|D_i^{obs} = d_i^{obs})$ Propagate
 $D_{new}^i = G(x_{new}, X_i) + \epsilon_i$ Calculate statistics from
 D_{new}^i

7

BAYESIAN CALIBRATION AND PREDICTION

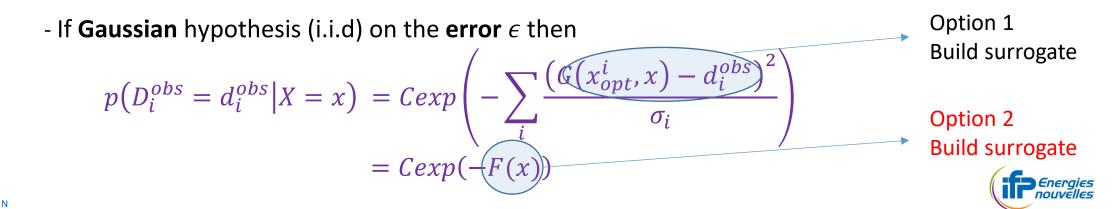
Problem :

- MCMC procedure requires a **large number of evaluation of the simulator** for different values of the parameters
- Simulator is expensive to evaluate

Solution : use a surrogate model but of what ?

- In MCMC we need to evaluate the posterior distribution :

 $p(X|D_i^{obs} = d_i^{obs}) \alpha \ p(D_i^{obs} = d_i^{obs}|X)p(X)$



SURROGATE

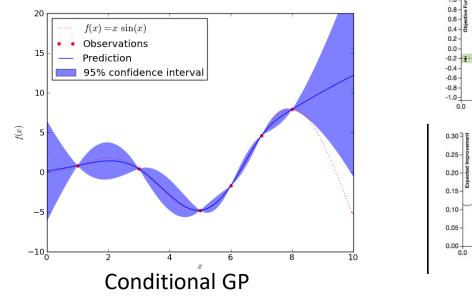
- Sample the posterior distribution via Markov Chain Monte Carlo coupled with an adaptive <u>Kriging</u> (Gaussian process regression) surrogate:
 - Standard approach: surrogate of F(x) from a set of points $(x_i, F(x_i))$ build a predictive surrogate \hat{F}
 - Adaptive approach: surrogate adaptively improved with iterative choice of design points x_i where
 - the variance of the surrogate prediction is maximum
 - the **Expected Improvement** criterion is **maximum** to emphasis good surrogate prediction where F(x) is small: avoid negative approximation values of a positive function

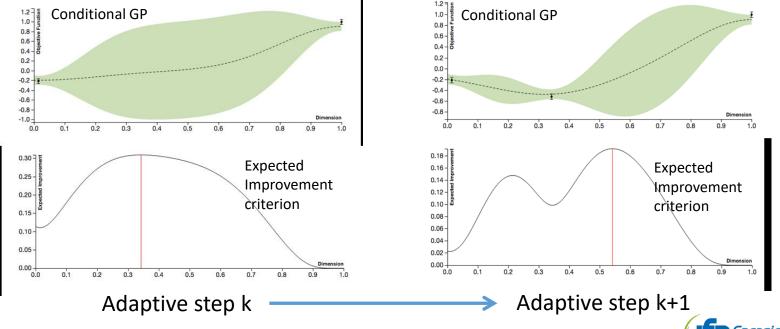
Gaussian Process : $\hat{F} \sim N(m, \Sigma)$ Gaussian Random Variable (RV): $\hat{F}(x) \sim N(m(x), \sigma(x))$

GAUSSIAN PROCESS REGRESSION A.K.A. KRIGING

Gaussian Process : $\hat{F} \sim N(m, \Sigma)$ **Gaussian RV** : $\hat{F}(x) \sim N(m(x), \sigma(x))$

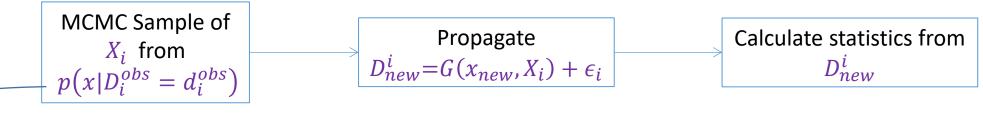
- The model is assumed to be a realization of a Gaussian Process (GP) with parametric prior mean function and a given covariance function.
- The surrogate is given by the mean of the GP conditionally to the observations \hat{F}





BAYESIAN APPROACH

$$F(x) \approx \widehat{F}(x) \sim N(m(x), \sigma(x))$$



« Plugged-in » posterior distribution

 $Cexp(-m(x)) \times p(x)$

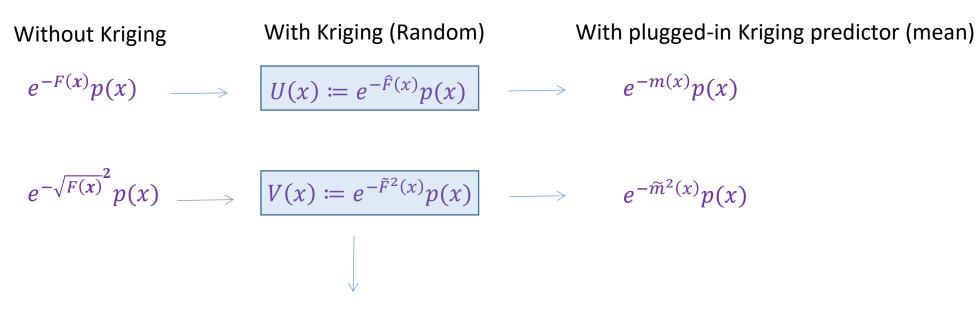
- Some remarks
 - Need sufficiently accurate surrogate m on all the parameters space or take into account the surrogate model error in the calibration
 - Negative values of m involves bad behavior of MCMC sampling
 - Propagation step requires running the simulator a non-negligible number of times (For this application: at least 500 simulations needed)

• Some proposals:

- Apply MCMC with **surrogates of residuals**
- **Constraint surrogate** to be positive : constraint Gaussian Process
- or **build surrogate** \tilde{F} of \sqrt{F} then square and input in the likelihood
- Include Kriging error in the procedure

$$\begin{vmatrix} F(x) \approx \widehat{F}(x) \sim N(m(x), \sigma(x)) \\ \sqrt{F(x)} \approx \widetilde{F}(x) \sim N(\widetilde{m}(x), \widetilde{\sigma}(x)) \end{vmatrix}$$

• Accounting for the Kriging error in the posterior distribution



What are the distributions of U(x) and V(x)?

 $\widehat{F}(x) \sim N(m(x), \sigma(x))$ $\widetilde{F}(x) \sim N(\widetilde{m}(x), \widetilde{\sigma}(x))$

 Accounting for the Kriging error of F(x) in the posterior distribution (By using log-normal distribution)

 $Expectation(U(x)) = e^{-(m(x) - \sigma^2(x)/2)}p(x)$

 $Mediane(U(x)) = e^{-m(x)}p(x)$

 $Mode(U(x)) = e^{-(m(x) + \sigma^2(x))}p(x)$

• Accounting for the Kriging error of \sqrt{F} in the posterior distribution (By using Chi-square distribution)

 $e^{-(\widetilde{m}^2(x)+\widetilde{\sigma}^2(x))}p(x)$

TEST CASE : SPE1

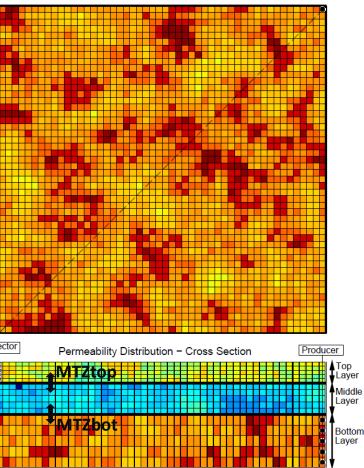
- 1 gas injector well
- 1 producer well
- Grid : 50x50x15 3 layers
- Permeabilities modeled by spherical variograms for each layer

1 parameter per layer Kbot_mean, Kmid_mean, Ktop_mean

- 2 Factors for vertical transmissivities for inter-layer permeability barriers *MTZbot, MTZtop*
- 2 Well productivity indexes MPI_inj, MPI_prod

7 parameters to calibrated

Permeability Distribution - Bottom Layer



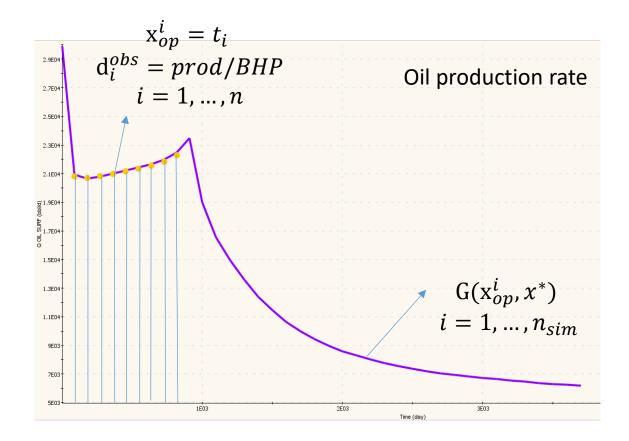
Roggero and Guerillot, 1996

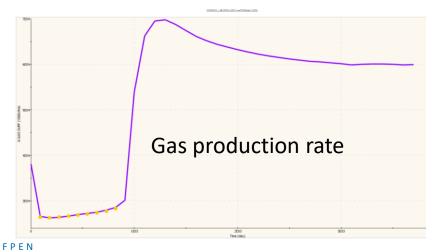
HISTORY MATCHING

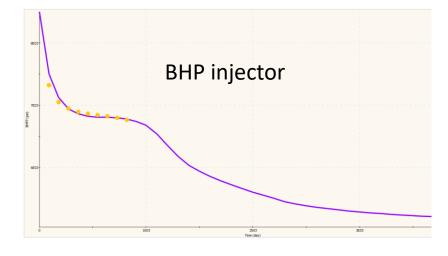
• 2 years ½ of production data

Oil production rate
Gas production rate
BHP at injector well

10 years : total simulation time



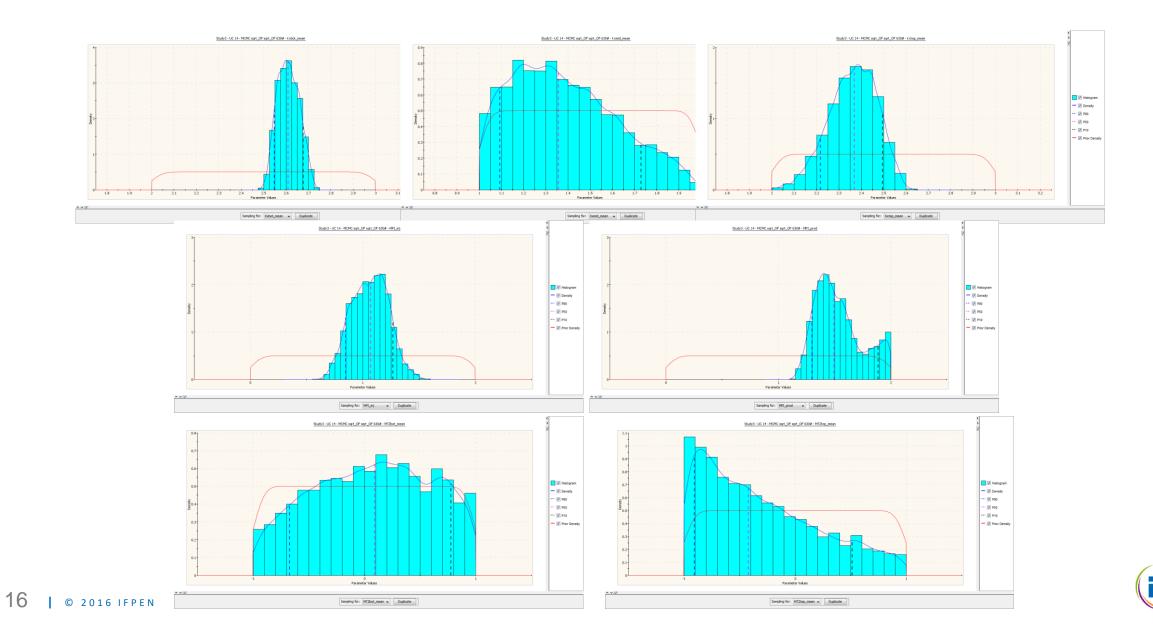




BAYESIAN : MARGINAL POSTERIOR SAMPLING

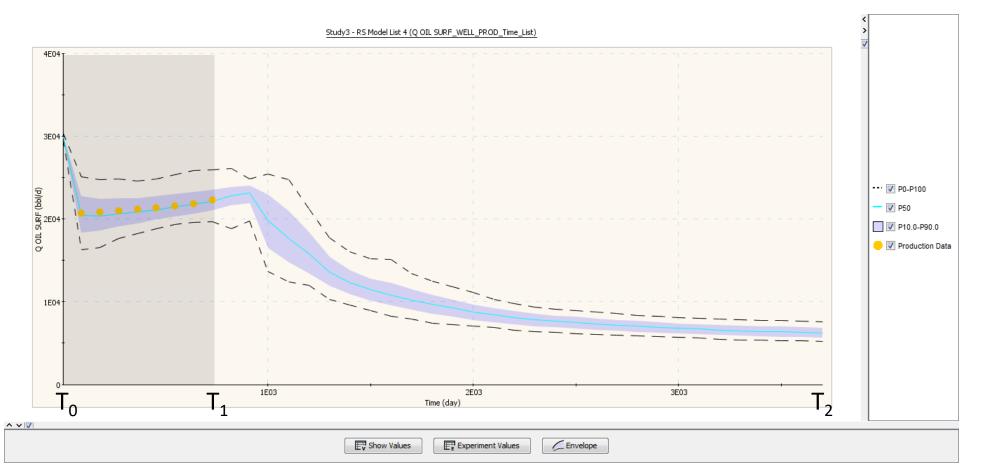
 $p(X = x | D_i^{obs} = d_i^{obs})$

P Energies nouvelles



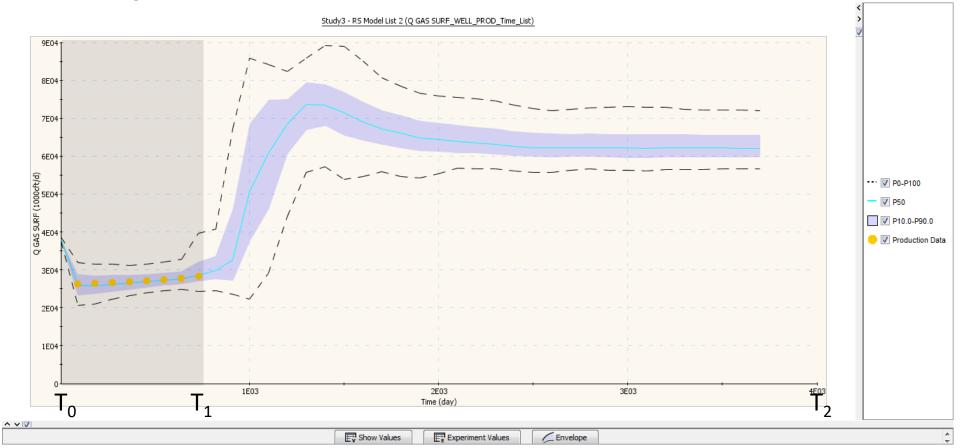
BAYESIAN : POSTERIOR PREDICTIONS

Oil production rate



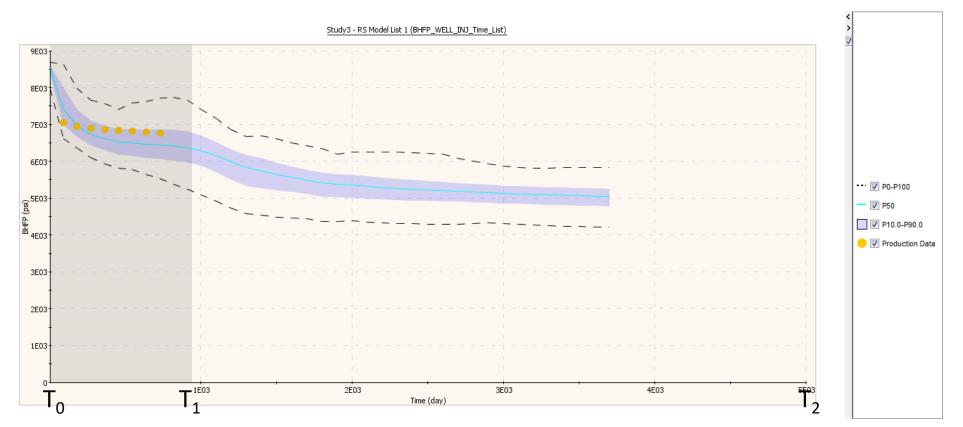
BAYESIAN : POSTERIOR PREDICTIONS

Gas production rate



BAYESIAN : POSTERIOR PREDICTIONS

BHP Injector well



19 © 2016 IFPEN

The solution of the History Matching (HM) optimization problem

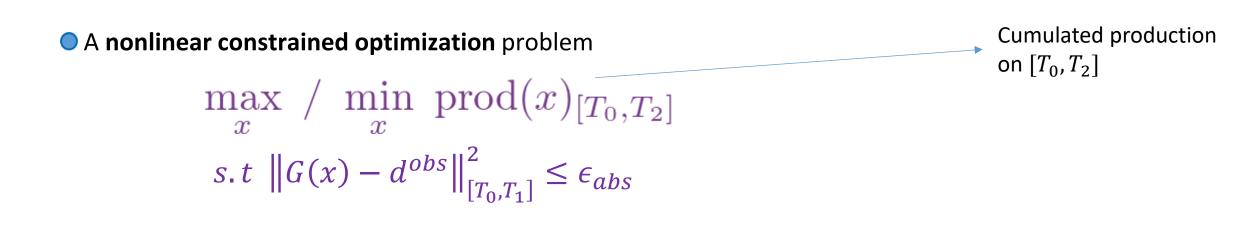
$$\min_{x} \|G(x) - d^{obs}\|_{[T_0, T_1]}^2$$

is only one solution among others that fit the production measures within fixed tolerances

Goal : determine, among the HM solutions, the reservoir model which maximizes/minimizes the forecast production

Upper and lower bounds of the forecast production

FORECAST EXTREME SCENARIOS



Cumulated production could be replaced by (function of) other simulator responses, e.g. pressure at top of the reservoir

> Roggero and Guerillot, 1996 Delbos et al., 2010

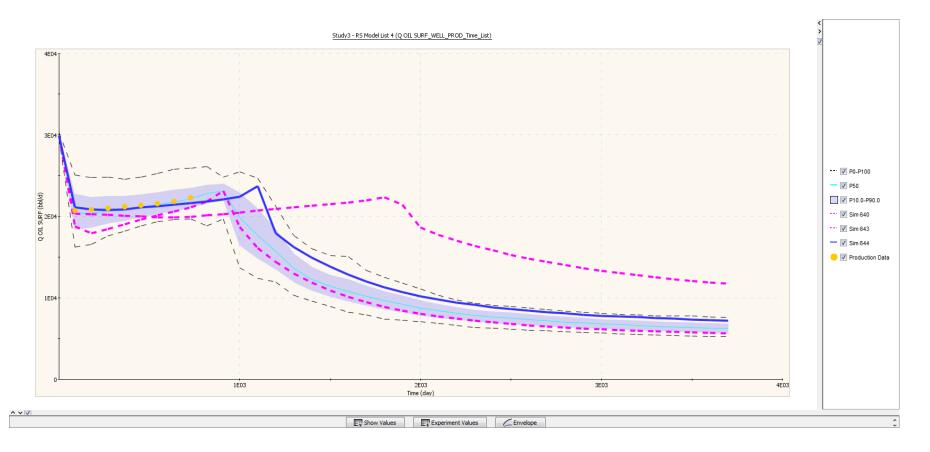
FORECAST EXTREME SCENARIOS ON SURROGATES

Extreme scenario

- Surrogates of **F** and of $Prod(.)_{[T_0,T_2]}$
- Nonlinear constrained optimization on surrogates

$$\min_{x} / \max_{x} \widetilde{\operatorname{Prod}}_{T_{2}}(x)$$
s.t. $\widetilde{F}(x) \leq \varepsilon$

FORECAST EXTREME SCENARIOS ON SURROGATES



Accuracy of responses surfaces is not sufficient to compute extreme scenarios

Apply an optimization method based on simulations

Dedicated algorithm for non linear constrained derivative free optimization SQA = Sequential Quadratic approximation

Langouët, Sinoquet

Interpolation-based trust region methods with local quadratic models

Powell, Conn, Scheinberg, Vicente, ...

SQA METHOD : SEQUENTIAL QUADRATIC APPROXIMATION

Extension of NEWUOA (Powell) to constrained optimization

$$\begin{split} & \min_{x} f(x) \\ & \text{s.t.} \ C_{DB}(x) \leq 0 \ \text{Derivative Based Constraints (linear / nonlinear)} \\ & C_{DF}(x) \leq 0 \ \text{Derivative Free Constraints} \end{split}$$

Constrained minimization sub-problems (SP)

$$\min_{\|d\| \le \Delta} Q(x_k + d) \quad s.t. \begin{cases} C_{DB}(x_k + d) \le 0, \\ \tilde{C}_{DF}(x_k + d) \le 0. \end{cases}$$

• Q and \tilde{C}_{DF} are quadratic interpolation models of f and C_{DF} (black-box obj. function and constraints)

SQA METHOD : SEQUENTIAL QUADRATIC APPROXIMATION

Initialization :

 $x_0, f(x_0), C_{DF}(x_0), \Delta$ m interpolation points $(y_i, f(y_i), C_{DF}(y_i))_{i=1,m}$

• At a given iteration k

- Build quadratic models Q and \tilde{C}_{DF}
- Minimization of the sub-problem (SP)
- New simulation at $x_k + d^*$

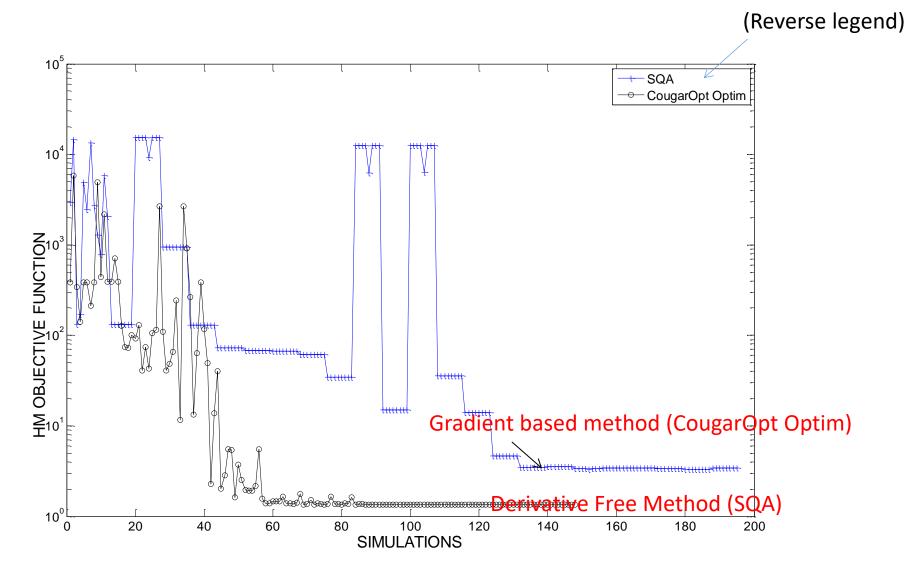
Define merit functions φ and $\tilde{\varphi}$: $\varphi(x) = f(x) + \sigma \sum_{i=1}^{n_{DF}} C_{DF}(x)^{\#}$

• Validation of the new point with $R = \frac{\varphi(x_k) - \varphi(x_k + d^*)}{\widetilde{\varphi}(x_k) - \widetilde{\varphi}(x_k + d^*)}$

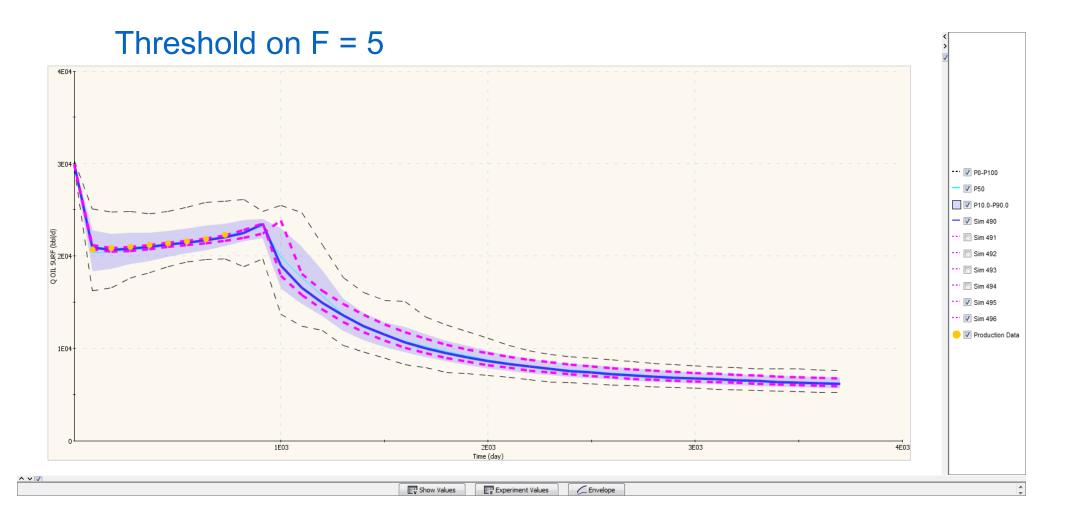
 \bigcirc Model improvement step with a new simulation if R< η

lace Update the trust region radius igtriangle

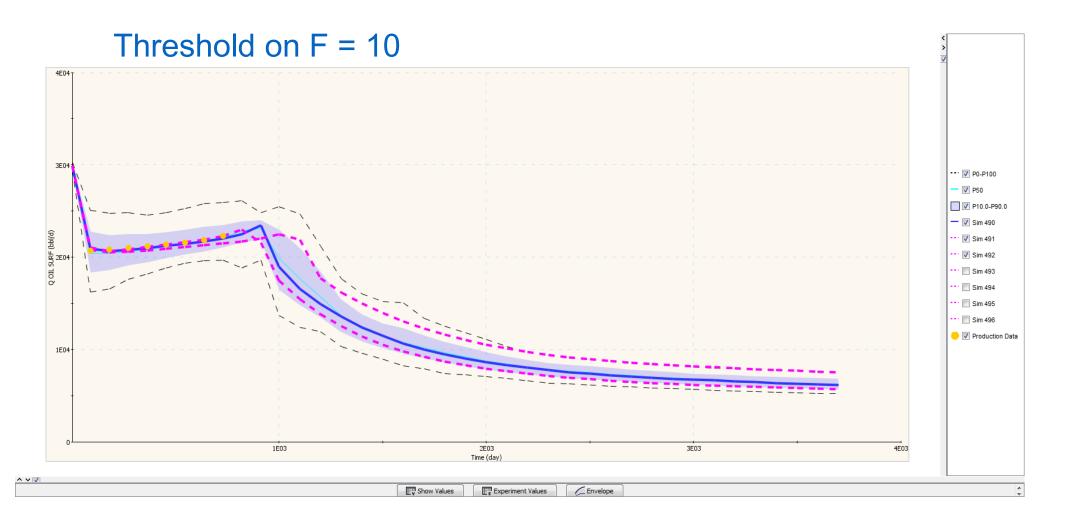
HISTORY MATCHING WITH SQA



EXTREME SCENARIOS OBTAINED WITH SQA



EXTREME SCENARIOS OBTAINED WITH SQA



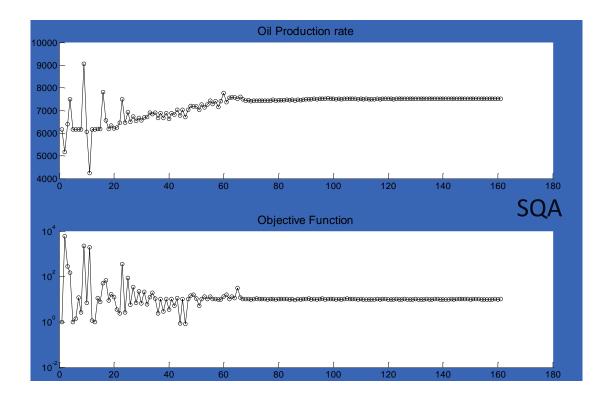
EXTREME SCENARIOS OBTAINED WITH SQA

Threshold on F = 204E04 т 3E04 --- 🔽 P0-P100 P50 P10.0-P90.0 — 📝 Sim 490 Q OIL SURF (bbl/d) - · 📄 Sim 491 - Sim 492 - 📝 Sim 493 🗥 📝 Sim 494 - Sim 495 • Sim 496 😑 📝 Production Data 1E04 1E03 2E03 3E03 4E03 Time (day) ^ v 🗸 Ev Show Values Experiment Values

CONCLUSIONS

Computing extreme scenarios with nonlinear constrained optimization based on simulations

- with SQA (less than 80 simulations per optimization)
- Could use adaptive surrogates if still too expensive



CONCLUSIONS

Computing extreme scenarios

with nonlinear constrained optimization based on simulations SQA:

- ~ 160 simulations needed
- Some proposals:
 - Could use adaptive surrogates if still too expensive

Bayesian approach

- Full distribution/sampling of parameters and predictions is obtained
- Need of accurate surrogate of F in the whole parameters space or take into account the surrogate model error in the calibration
- $\circ \sim 500$ simulations needed in propagation

REFERENCES

Bayesian paradigm

 Robert C. (2001), The Bayesian Choice : from Decision-Theoretic Motivations to Computational Implementation, Springer-Verlag, New York.

Gaussian Process Regression

- Stein, M. (1999), Interpolation of Spatial Data : Some Theory for Kriging, Springer, New York.
- Charnock T.W., Daniels W.M., Higgins N.A. (1999) Geostatistical Estimation Techniques Applied to Radionuclide Deposition: an Accident Response Decision Aid. In: Gómez-Hernández J., Soares A., Froidevaux R. (eds) geoENV II — Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 10. Springer, Dordrecht
- Rasmussen, C.E. and Williams, C.K.I. (2006), Gaussian Processes for Machine Learning, The MIT Press, Cambridge.

Constrained Gaussian Process Regression

- Da Veiga, S. and Marrel, A. (2012). Gaussian process modeling with inequality constraints. Annales de la faculté des sciences de Toulouse Mathématiques, 21(3):529–555.
- Hassan Maatouk, H.and Bay, X. (2017). Gaussian process emulators for computer experiments with inequality constraints. Mathematical Geosciences, 49(5):557–582.
- Lopez-Lopera, A. F. (2018). lineqGPR: Gaussian process regression models with linear inequality constraints. <u>https://cran.rproject.org/web/packages/lineqGPR/index.html</u>.
- Lopez-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2018). Finite-dimensional Gaussian approximation with linear inequality constraints. SIAM/ASA Journal on Uncertainty Quantification, 6(3):1224–1255.

Bayesian Calibration

- Kennedy, M. C. and O'Hagan, A. (2001), Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63: 425–464.
- D. Higdon, D., Kennedy, M., Cavendish, J.C., Cafeo, J.A. and Ryne, R.D. (2004), Combining Field Data and Computer Simulations for Calibration and Prediction, SIAM Journal on Scientific Computing (26) 448-466.
- Tarantola, A., (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics.
- Jeremiah, E., S. Sisson, L. Marshall, R. Mehrotra, and A. Sharma (2011), Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers, Water Resour. Res.
- Bachoc, F., Bois, G., Garnier, J. and Martinez, J.M. (2014), Calibration and improved prediction of computer models by universal Kriging, Nuclear Science and Engineering 176(1) 81-97.
- Collis, J., Connor, A.J., Paczkowski, M. et al. (2017), Bayesian Calibration, Validation and Uncertainty Quantification for Predictive Modelling of Tumour Growth: A Tutorial, Bull Math Biol, 79: 939.

Constraint derivative based optimization

 Blanc, G., Guerillot, D., Rahon, D., & Roggero, F. (1996), Building Geostatistical Models Constrained by Dynamic Data - A Posteriori Constraints. Society of Petroleum Engineers.

Unconstraint derivative free optimization

- Powell, M. J. D. (2008), Developments of NEWUOA for minimization without derivatives. IMA Journal of Numerical Analysis, 28:649–664.
- Conn, A. R., Scheinberg, K. and Vicente, L. N. (2009), Introduction to derivative-free optimization. SIAM, Philadelphia, PA.

Constraint derivative free optimization

- Metla, N., Delbos, F., Da Veiga, S. and Sinoquet, D. (2010), Constrained Nonlinear Optimization for Extreme Scenarii Evaluation in Reservoir Characterization, ECMOR XII - 12th European Conference on the Mathematics of Oil Recovery.
- Langouët, H.. (2011). "Optimisation sans dérivées sous contraintes : deux applications industrielles en ingénierie de réservoir et en calibration des moteurs", PhD thesis, Université de Nice-Sophia Antipolis.

Innover les énergies

Retrouvez-nous sur : www.ifpenergiesnouvelles.fr @IFPENinnovation

