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OIL AND GAS FIELD MANAGEMENT 

We are interested in the forecast of oil/gas production and Bottom Hole Pressure (BHP) 
of a petroleum reservoir  

We have at our disposal 
Measured Data on the field (i.e. production until a given time) 

A parametrized simulator of the petroleum reservoir  
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OPTIMIZATION AND BAYESIAN APPROACHES FOR MODEL 
CALIBRATION AND PREDICTION 

Bayesian calibration + prediction via propagation 

 
Quantify what information my uncertain observations give me on my calibration parameters  

Estimate posterior distribution of a reservoir model parameters from history data  

   

Distribution/Sampling of 𝑁𝑒𝑤 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑘𝑛𝑜𝑤𝑖𝑛𝑔 𝑜𝑙𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠  

Propagate the model parameters uncertainties on predictions 

   

Extreme scenario prediction 
Minimize/Maximize (forecast production) subject to History Matching constraint 
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DATA AND ERRORS 

My 𝑛 real physical responses of the experiment under given operational conditions 
𝑥𝑜𝑝

𝑖   

𝑑𝑖
𝑟𝑒𝑎𝑙   𝑖 = 1, … , 𝑛   

 
 

My 𝑛 measured observations under operational conditions 𝑥𝑜𝑝
𝑖  :   

𝑑𝑖
𝑜𝑏𝑠  𝑖 = 1, … , 𝑛  

 
 

The measurement errors on my observations: 
𝜖𝑖

𝑚 
 
 

Example: 
oil production  
history measured 
on the field  

Unseen 

unknown 

My Data : 𝑥𝑜𝑝
𝑖 , 𝑑𝑖

𝑜𝑏𝑠   𝑖 = 1, … , 𝑛   
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MODELLING DATA 

 

« Observational » model: 

𝑑𝑖
𝑜𝑏𝑠 = 𝑑𝑖

𝑟𝑒𝑎𝑙 + 𝜖𝑖
𝑚 

 

My simulator responses with unknown optimal calibration parameters 𝑥∗ evaluated 
at operationnal conditions 𝑥𝑜𝑝

𝑖 : 

𝐺 𝑥𝑜𝑝
𝑖 , 𝑥∗  

 

My simulator mimic exactly, or at best, the real physical phenomenon: 

𝑑𝑖
𝑟𝑒𝑎𝑙 = 𝐺 𝑥𝑜𝑝

𝑖 , 𝑥∗ + 𝜖𝑖
𝑠𝑖𝑚  

 

« Observational-simulated » model: 

𝑑𝑖
𝑜𝑏𝑠 = 𝐺 𝑥𝑜𝑝

𝑖 , 𝑥∗ + 𝜖𝑖 
 

with 𝜖𝑖 = 𝜖𝑖
𝑚 + 𝜖𝑖

𝑠𝑖𝑚 
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STATISTICAL MODELLING 

« Observational-simulated » model 
 

𝑑𝑖
𝑜𝑏𝑠 = 𝐺 𝑥𝑜𝑝

𝑖 , 𝑥∗ + 𝜖𝑖 

 

Statistical modelling: 𝐷𝑜𝑏𝑠 = 𝐺 𝑥𝑜𝑝, 𝑋 + 𝜖 
 
 

What we do not know and that we are going to model are ∶  𝜖 and 𝑋 
    Choice of  
 - distribution of the error 𝜖  
 - A prior distribution on the calibration parameters 𝑋 
 
 

Knowing my observations what is the distribution of my calibration parameters 

Random variables 
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BAYESIAN CALIBRATION AND PREDICTION 

Bayesian Calibration  
 

𝑝 𝑋 = 𝑥|𝐷𝑖
𝑜𝑏𝑠 = 𝑑𝑖

𝑜𝑏𝑠  𝛼  𝑝 𝐷𝑖
𝑜𝑏𝑠 = 𝑑𝑖

𝑜𝑏𝑠 𝑋 = 𝑥 𝑝 𝑋 = 𝑥  
 

Bayesian Prediction model 
 

    𝐷𝑛𝑒𝑤=𝐺 𝑥𝑛𝑒𝑤, 𝑋 + 𝜖 
 

Theoretical prediction distribution 
 

𝑝 𝐷𝑛𝑒𝑤|𝐷𝑖
𝑜𝑏𝑠 = 𝑑𝑖

𝑜𝑏𝑠 = ∫ 𝑝 𝐷𝑛𝑒𝑤 𝑋 = 𝑥 𝑝 𝑋 = 𝑥 𝐷𝑖
𝑜𝑏𝑠 = 𝑑𝑖

𝑜𝑏𝑠 𝑑𝑥 
 

Propagation 
 

MCMC* Sample of 
𝑋𝑖  from 

 𝑝 𝑥|𝐷𝑖
𝑜𝑏𝑠 = 𝑑𝑖

𝑜𝑏𝑠  

Propagate 

𝐷𝑛𝑒𝑤
𝑖 =𝐺 𝑥𝑛𝑒𝑤, 𝑋𝑖 + 𝜖𝑖  

Calculate statistics from 

𝐷𝑛𝑒𝑤
𝑖  

prior 

Likelihood 

posterior 

* : Monte Carlo Markov Chain  
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BAYESIAN CALIBRATION AND PREDICTION 

Problem :  
 - MCMC procedure requires a large number of evaluation of the simulator for   
    different values of the parameters   
 - Simulator is expensive to evaluate  
 

Solution : use a surrogate model but of what ? 
 

 - In MCMC we need to evaluate the posterior distribution : 
 

𝑝 𝑋|𝐷𝑖
𝑜𝑏𝑠 = 𝑑𝑖

𝑜𝑏𝑠  𝛼  𝑝 𝐷𝑖
𝑜𝑏𝑠 = 𝑑𝑖

𝑜𝑏𝑠 𝑋 𝑝 𝑋  
 

- If Gaussian hypothesis (i.i.d) on the error 𝜖 then 

𝑝 𝐷𝑖
𝑜𝑏𝑠 = 𝑑𝑖

𝑜𝑏𝑠 𝑋 = 𝑥  = 𝐶𝑒𝑥𝑝 −  
𝐺 𝑥𝑜𝑝𝑡

𝑖 , 𝑥 − 𝑑𝑖
𝑜𝑏𝑠 2

𝜎𝑖
𝑖

    = 𝐶𝑒𝑥𝑝 −𝐹(𝑥)

 

 
 

Option 1 
Build surrogate 

Option 2 
Build surrogate 



9 |    ©  2 0 1 6  I F P E N  

SURROGATE 

Sample the posterior distribution via Markov Chain Monte Carlo coupled 
with an adaptive Kriging (Gaussian process regression) surrogate: 

 
Standard approach: surrogate of 𝐹 𝑥  from a set of points (𝑥𝑖 , 𝐹 𝑥𝑖 ) build a 
predictive surrogate 𝐹  

 

Adaptive approach: surrogate adaptively improved with iterative choice of design 
points 𝑥𝑖 where 

 - the variance of the surrogate prediction is maximum 

 - the Expected Improvement criterion is maximum to emphasis good    
    surrogate prediction where 𝐹 𝑥  is small: avoid negative approximation values of 
    a positive function 

𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 𝑷𝒓𝒐𝒄𝒆𝒔𝒔 ∶  𝐹 ∼ 𝑵(𝒎, 𝚺) 
𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 𝑹𝒂𝒏𝒅𝒐𝒎 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝑹𝑽 : 𝐹 𝒙 ∼ 𝑵(𝒎 𝒙 , 𝝈 𝒙 ) 
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GAUSSIAN PROCESS REGRESSION A.K.A. KRIGING 

The model is assumed to be a realization of a Gaussian Process (GP) with 
parametric prior mean function and a given covariance function. 

The surrogate is given by the mean of the GP conditionally to the 
observations 𝑭  

Expected  
Improvement  
criterion 

Conditional GP 

Conditional GP Conditional GP 

Adaptive step k Adaptive step k+1 

Expected  
Improvement  
criterion 

𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 𝑷𝒓𝒐𝒄𝒆𝒔𝒔 ∶  𝐹 ∼ 𝑵(𝒎, 𝚺) 
𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 𝑹𝑽 ∶  𝐹 𝒙 ∼ 𝑵(𝒎 𝒙 , 𝝈 𝒙 ) 
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BAYESIAN APPROACH 

 

 

 

MCMC Sample of 
𝑋𝑖   from 

 𝑝 𝑥|𝐷𝑖
𝑜𝑏𝑠 = 𝑑𝑖

𝑜𝑏𝑠  

Propagate 

𝐷𝑛𝑒𝑤
𝑖 =𝐺 𝑥𝑛𝑒𝑤 , 𝑋𝑖 + 𝜖𝑖  

Calculate statistics from 

𝐷𝑛𝑒𝑤
𝑖  

Some remarks 
Need sufficiently accurate surrogate 𝑚 on all the parameters space or take into  
account the surrogate model error in the calibration  
Negative values of 𝑚 involves bad behavior of MCMC sampling 
Propagation step requires running the simulator a non-negligible number of times 

     (For this application: at least 500 simulations needed) 

Some proposals: 
Apply MCMC with surrogates of residuals 
Constraint surrogate to be positive : constraint Gaussian Process 
or build surrogate 𝑭  of 𝑭 then square and input in the likelihood  
Include Kriging error in the procedure 

 

𝐶𝑒𝑥𝑝 −𝑚(𝑥)  x 𝑝 𝑥  

𝑭 𝒙 ≈ 𝑭 𝒙 ∼ 𝑵 𝒎 𝒙 , 𝝈 𝒙  

« Plugged-in » posterior distribution 
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𝑒−𝐹 𝒙 𝑝(𝑥)   

BAYESIAN APPROACH 

Accounting for the Kriging error in the posterior distribution 

𝑭 𝒙 ≈ 𝑭 𝒙 ∼ 𝑵 𝒎 𝒙 , 𝝈 𝒙  

𝑭(𝒙) ≈  𝑭 𝒙 ∼ 𝑵(𝒎 𝒙 , 𝝈 𝒙 ) 

𝑒− 𝐹 𝒙
𝟐

𝑝(𝑥)  𝑉 𝑥 ≔ 𝑒−𝐹 2 𝑥 𝑝(𝑥) 

𝑒−𝑚 𝑥 𝑝(𝑥) 

𝑒−𝑚 2 𝑥 𝑝(𝑥) 

𝑈 𝑥 ≔ 𝑒−𝐹 𝑥 𝑝(𝑥) 

With Kriging (Random) With plugged-in Kriging predictor (mean) Without Kriging 

What are the distributions of U(x) and V(x) ? 
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BAYESIAN APPROACH 

Accounting for the Kriging error of 𝐹(𝑥) in the posterior distribution 

   (By using log-normal distribution) 

 
 

𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑈 𝑥 = 𝑒−(𝑚 𝑥 −𝜎2 𝑥 /2)𝑝(𝑥) 

𝑀𝑒𝑑𝑖𝑎𝑛𝑒 𝑈 𝑥 = 𝑒−𝑚(𝑥)𝑝(𝑥) 

𝑀𝑜𝑑𝑒 𝑈 𝑥 = 𝑒−(𝑚 𝑥 +𝜎2 𝑥 )𝑝(𝑥) 

Accounting for the Kriging error of 𝐹 in the posterior distribution 

    (By using Chi-square distribution) 
 
  𝑒−(𝑚 2 𝑥 +𝜎 2 𝑥 )𝑝(𝑥) 

𝑭 𝒙 ∼ 𝑵 𝒎 𝒙 , 𝝈 𝒙  

𝑭 𝒙 ∼ 𝑵(𝒎 𝒙 , 𝝈 𝒙 ) 
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TEST CASE : SPE1 

1 gas injector well 

1 producer well  

Grid : 50x50x15  3 layers 

Permeabilities modeled by spherical variograms for each 
layer 
1 parameter per layer 
Kbot_mean, Kmid_mean, Ktop_mean 

2 Factors for vertical transmissivities  
for inter-layer permeability barriers 
MTZbot, MTZtop  

2 Well productivity indexes 
MPI_inj, MPI_prod 
 

7 parameters to calibrated 
 

 

MTZtop 

MTZbot 

Roggero and Guerillot, 1996 
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HISTORY MATCHING 

2 years ½ of production data 

Oil production rate 

Gas production rate 

BHP at injector well 

10 years : total simulation time  

Oil production rate 

Gas production rate 

BHP injector 

x𝑜𝑝
𝑖 = 𝑡𝑖   

d𝑖
𝑜𝑏𝑠 = 𝑝𝑟𝑜𝑑/𝐵𝐻𝑃 

𝑖 = 1, … , 𝑛 

G(x𝑜𝑝
𝑖 , 𝑥∗)  

𝑖 = 1, … , 𝑛𝑠𝑖𝑚 
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BAYESIAN : MARGINAL POSTERIOR SAMPLING  𝒑 𝑿 = 𝒙|𝑫𝒊
𝒐𝒃𝒔 = 𝒅𝒊

𝒐𝒃𝒔  
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BAYESIAN : POSTERIOR PREDICTIONS  

Oil production rate 

T0 T1 T2 
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BAYESIAN : POSTERIOR PREDICTIONS  

Gas production rate 

T0 T1 T2 
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BAYESIAN : POSTERIOR PREDICTIONS  

BHP Injector well 

T0 T1 T2 
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FORECAST EXTREME SCENARIOS 

The solution of the History Matching (HM) optimization problem  

 

 

is only one solution among others that fit the production measures within fixed tolerances 

 

Goal : determine, among the HM solutions, the reservoir model which maximizes/minimizes the 
forecast production 

 

Upper and lower bounds of the forecast production   

 

min
𝑥

 𝐺 𝑥 − 𝑑𝑜𝑏𝑠
𝑇0,𝑇1

2
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FORECAST EXTREME SCENARIOS 

A nonlinear constrained optimization problem 
   

 
  

 

 

Cumulated production could be replaced by (function of) other simulator responses, e.g. pressure 
at top of the reservoir 

      Roggero and Guerillot, 1996 
Delbos et al., 2010  
 

Cumulated production 
on [𝑇0, 𝑇2] 

𝑠. 𝑡  𝐺 𝑥 − 𝑑𝑜𝑏𝑠
𝑇0,𝑇1

2
≤ 𝜖𝑎𝑏𝑠  
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FORECAST EXTREME SCENARIOS ON SURROGATES 

Extreme scenario 

Surrogates of 𝑭 and of Prod(. )[𝑇0,𝑇2] 

Nonlinear constrained optimization on surrogates  
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FORECAST EXTREME SCENARIOS ON SURROGATES 

Accuracy of responses surfaces is not sufficient to compute extreme scenarios 
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NONLINEAR CONSTRAINED DFO 

Apply an optimization method based on simulations 

 

Dedicated algorithm for non linear constrained derivative free optimization 
SQA = Sequential Quadratic approximation 
    Langouët, Sinoquet 
 

Interpolation-based trust region methods with local quadratic models        

    Powell, Conn, Scheinberg, Vicente, … 

 

 

DFO : Derivate Free Optimization 
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SQA METHOD : SEQUENTIAL QUADRATIC APPROXIMATION 

Constrained minimization sub-problems (SP) 

 

 

 

𝑄 and 𝐶 𝐷𝐹  are quadratic interpolation models 

of 𝑓 and 𝐶𝐷𝐹  (black-box obj. function and constraints) 

 

Extension of NEWUOA (Powell) to constrained optimization 

Derivative Based Constraints (linear / nonlinear) 

 

  

s.t. 

Derivative Free Constraints 
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SQA METHOD : SEQUENTIAL QUADRATIC APPROXIMATION 

Initialization : 

 

      interpolation points  

    

At a given iteration k 

Build quadratic models 𝑄 and 𝐶 𝐷𝐹 

Minimization of the sub-problem (SP) 

New simulation at 𝑥𝑘 + 𝑑∗ 

    Define merit functions 𝜑 and 𝜑  :  

Validation of the new point with 𝑅 =
𝜑 𝑥𝑘 −𝜑 𝑥𝑘+𝑑∗

𝜑 𝑥𝑘 −𝜑 𝑥𝑘+𝑑∗   

Model improvement step with a new simulation if R< 

Update the trust region radius 
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HISTORY MATCHING WITH SQA 
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SQA

CougarOpt Optim

Gradient based method (CougarOpt Optim) 

Derivative Free Method (SQA) 

(Reverse legend) 



28 |    ©  2 0 1 6  I F P E N  

EXTREME SCENARIOS OBTAINED WITH SQA 

Threshold on F = 5 
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EXTREME SCENARIOS OBTAINED WITH SQA 

Threshold on F = 10 
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EXTREME SCENARIOS OBTAINED WITH SQA 

Threshold on F = 20 
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CONCLUSIONS 

Computing extreme scenarios with nonlinear constrained optimization based on simulations 

with SQA (less than 80 simulations per optimization) 

Could use adaptive surrogates if still too expensive 
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CONCLUSIONS 

Computing extreme scenarios 
with nonlinear constrained optimization based on simulations SQA: 

∼  160 simulations needed 

Some proposals: 

Could use adaptive surrogates if still too expensive  

 

Bayesian approach 
Full distribution/sampling of parameters and predictions is obtained  

Need of accurate surrogate of 𝐹 in the whole parameters space or take into account the surrogate 
model error in the calibration  

∼  500 simulations needed in propagation 
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