Using a Cloud System Approach to demonstrate the impact of a coherent bulk ice cloud scheme in the LMDZ GCM

Claudia Stubenrauch, M. Bonazzola, S. Protopapadaki¹ & I. Musat

Laboratoire de Météorologie Dynamique / IPSL, France

¹ now COOPETIC

DEPHY workshop, Toulouse, France, 13 March 2019

Towards a coherent bulk ice ice cloud scheme deduced from thermodynamics

v_m strongly influences UT cloud occurrence & properties
& has potential to influence climate sensitivity (e.g. Sanderson et al. 2008)
D_e affects the radiative properties of UT clouds

current version of LMDZ: $v_m = f(IWC)$, $D_e = f(T)$

 v_m is one of the parameters which is tuned to achieve radiative balance (x 0.3)

airborne & ground-based observations: $v_m = f(IWC, T)$ IWC & T classify distributions of ice crystal size & habit (*Field et al. 2007*) (review & comparison: *Stubenrauch & Bonazzola, JAMES, subm. Nov 2018*)

construct parametrization from existing ones:

1) empirical parametrizations : $v_m = f(IWC, T)$; $D_{eff} = f(v_m)$

2) v_m, D_m from moments of size distribution, parametrized as f(IWC, T) *next step*: parametrize ice single scattering properties SSP = f(IWC, T) (in cooperation with A. Baran, MetOffice)

coherence by using same measured size distributions for $v_m \& SSP$ parameterizations

$v_m - D_e$ relationships

- fall speed v_m & effective ice crystal diameter D_{eff} are closely related, as they both depend on ice area / ice mass

Direct relation between v_m & D_{eff} needs more realistic v_m (scaled by 0.9) => need to adjust remaining tuning parameters for radiation balance (EPMAX & RQH)

Synthesis : v_m & D_{eff} = f(T, IWC)

Stubenrauch & Bonazzola, JAMES subm. Nov 2018

New diagnostics using AIRS/IASI cloud observation simulator

IR Sounders provide cloud height p_{cld} & emissivity ϵ_{cld} ; sensitive to cirrus

- construct clouds from vertically contiguous cloudy layers
- clouds divided into sub-sections of similiar vertical structure
- keep only sub-sections with IR optical depth > 0.1

in better agreement with observations

- filter observation times: 1:30AM, 9:30AM, 1:30PM, 9:30PM LT
- -> total & high-level cloud cover, p_{cld} , T_{cld} , ε_{cld} , z_{cld} , fraction of Cb, Ci, thin Ci

advantages: allows to evaluate i) sub-grid fractions of Cb, cirrus & thin cirrus ii) diurnal cycle of UT cloud properties

UT cloud cover & its composition (Cb, Ci, thin Ci)

UT Cloud System Concept to assess GCM parameterizations

Cloud System Concept (similar p_{cld} & horizontal ε_{cld} structure -> convective cores & anvils) relates the anvil properties to processes shaping them

-> process-oriented evaluation of detrainment / convection / microphysics parameterizations

AIRS snapshot 3 July 2008 AM

New diagnostics using UT cloud system statistics

new ice schemes (& more realistic v_m) in better agreement with observations: larger system sizes, broader T distributions, decreased anvil emissivity

link anvil structure to convective depth

Protopapadaki et al. ACP 2017

15 years AIRS; *tropical UT cloud systems* (p_{cld} - $p_{tropopause}$ < 250 hPa or p_{cld} < 440 hPa); *convective core (Cb):* ϵ_{cld} >0.98; *mature systems*: Cb fraction within system 0.1 – 0.3

Deeper convective cores -> stronger max rain rate -> T^{cb}_{min} good proxy for convective strength

Deeper convection leads to relatively more thin cirrus within larger anvils (similar land / ocean)

relation robust using different proxies : $T_{min}^{Cb} / LNB(max mass)$

increasing convective depth

Why?

H1: UT environmental predisposition (at higher altitude larger RH, T stratification) H2: UT humidification from cirrus outflow

Does the relationship change in a warmer climate ?

process-oriented UT cloud system behaviour

data control v_m =0.3 x f(IWC) D_{eff} = f(T) empirical v_m(IWC,T)& D_{eff}(v_m) PSDM v_m & D_{eff}(v_m) PSDM v_m, D_m & D_{eff}(D_m)

Stubenrauch et al., JAMES, subm. Jan 2019

New process-oriented diagnostics based on Cloud System Concept powerful constraint:

more realistic v_m –D_{eff} -> more realistic anvil size & ε horizontal structure (increasing thin Ci) development

Summary & Outlook

bulk ice cloud schemes should coherently couple v_m (cloud physics) & D_e (cloud radiative effects)
realistic v_m -> adjusted tuning -> UT water sub-grid variability had to be reduced for radiation balance

- \succ v_m =f(IWC,T) instead of f(IWC); D_e is now directly linked to v_m (or to same size distribution)
- Cloud System diagnostics provides powerful constraints: new bulk ice schemes -> larger cloud systems & slightly less emissive anvils, in better agreement with AIRS observations
- Cloud System Concept links anvils to convection allows process-oriented evaluation: behavior of anvils with increasing convective depth & along statistical life cycle
 -> new bulk ice schemes seem to improve this behavior

next step: improve formulation of sub-grid UT rel. water variability (RQH threshold) using AIRS climatology of Kahn et al. 2009, 2011

ϵ – T relation of UT cloud systems

- Decreasing RQH leads to smaller cloud system emissivity at colder T, in better agreement with the data
- Midlatitudes: height at which RQH is applied should be different than in tropics (250 hPa)

Atmospheric Humidity changes

From cloud retrieval to cloud systems

clouds are extended objects, driven by dynamics -> organized systems

Method: 1) group adjacent grid boxes with high clouds of similar height (p_{cld})

2) use ε_{cld} to distinguish convective core, thick cirrus, thin cirrus (only IR sounder)

30N-30S: UT cloud systems cover 25%, those without convective core 5% 50% of these originate from convection (Luo & Rossow 2004, Riihimaki et al. 2012)

$v_m - D_e$ Strategies for LMDZ GCM

v_m = F07 PSD momentum & F15 A-B couples for ice / snow
D_{eff} = f(v_m) of H03 (mean between synoptic & anvil cirrus)
PSDM v_m & D_e=f(v_m)

or

D_m = F07 PSD momentum

 $D_{eff} = 0.17 \text{ x } D_{m} \text{ (assumed aggregates, fitted to } D_{eff} v_{m}, Baran \text{ et al. 2016)}$ $PSDM v_{m}, D_{m} \& D_{e} = f(D_{m})$

Next step: use for radiative transfer directly single scattering property (SSP) parameterization f(IWC,T) of Baran et al. 2016 (same PSDs as in F07)

Tuning parameters most relevant for high clouds

FALLICE: scaling of fall speed EPMAX: maximum precipitation efficiency RQH: Rel. width of sub-grid water distribution above 250 hPa

FALLICE	EPMAX	RQH
0.3	0.9985	0.40
0.9	0.9990	0.08
0.9	0.9988	0.11
0.9	0.9988	0.11
	FALLICE 0.3 0.9 0.9 0.9	FALLICE EPMAX 0.3 0.9985 0.9 0.9990 0.9 0.9988 0.9 0.9988 0.9 0.9988

De <-> ice crystal size distribution

cloud physics – radiation parameterization

Baran et al. JGR 2014

describe single scattering properties (β_{ext} , β_{sca} , g) as function of IWC / T

using parameterized in situ size distributions

ensemble model size distribution has 6 habits as fct of size

integrated in Met Office Unified Model

Synthesis : $v_m = f(T, IWC)$

Analytical expressions: D - > bulk properties

PSD generally expressed as :

 $\mathbf{N}(\mathbf{D}) = \mathbf{N}_0 \ \mathbf{D}^{\mu} \mathbf{e}^{-\lambda \mathbf{D}}$

D maximum dimension ice crystals, λ slope, μ dispersion; exponential PSD: $\mu=0$ decrease in $\lambda \rightarrow$ PSD broadening; PSD bends down for smaller crystals, when $\mu > 0$

Cirrus bulk properties = mass- or area-weighted integrals of PSD,

with $m = a D^b$ $A = c D^d$ b=3 for sphere, b = 2 for aggregates, b = 1.5 for dendrites

 $\mathbf{IWC} = \int \mathbf{m(D)} \ \mathbf{N(D)} \ \mathbf{dD} = \int \mathbf{a} \ \mathbf{N_0} \ \mathbf{D}^{b+\mu} e^{-\lambda \mathbf{D}} \ \mathbf{dD} = \mathbf{a} \ \mathbf{N_0} \ \mathbf{\Gamma(b+\mu+1)} / \lambda^{(b+\mu+1)}$ $\mathbf{D_m} = \int \mathbf{D^3} \ \mathbf{N(D)} \ \mathbf{dD} \ / \int \mathbf{D^2} \ \mathbf{N(D)} \ \mathbf{dD} = (\mathbf{b+\mu+0.67}) / \lambda \quad \text{Mitchell et al. 1991}$

coefficients depend on ice crystal habit & size, can they be assumed to be constant with T? Field 2007 supposes aggregates (b = 2) in PSD moment parameterization

 $v_t \sim (m/A)^{0.6} D^{0.3} f(p) \qquad v_t = A D^B$ $v_m = \int m(D) v_t(D) N(D) dD / \int m(D) N(D) dD$

 $\mathbf{v_m} = \mathbf{A} \mathbf{D_m}^{\mathbf{B}}$ Heymsfield et al. 2013

A & B for 3 D ranges (Heymsfield et al. 2013)

A & B for 2 D ranges (Furtado et al. 2015)

PSD moment parameterization

Field et al. 2007 (F07): 13000 PSDs, of 4 field campaigns (tropics & midlatitudes)

 $\mathbf{M}_{\mathbf{n}} = \int \mathbf{D}^{\mathbf{n}} \mathbf{N}(\mathbf{D}) \, \mathbf{d}\mathbf{D} = \mathbf{A}(\mathbf{n}) * \mathbf{e}^{\mathbf{B}(\mathbf{n})*\mathbf{T}} * \mathbf{M}_{2}^{\mathbf{C}(\mathbf{n})}$ $\mathbf{M}_{2} = \mathbf{IWC} / a \quad \mathbf{D}_{\mathbf{m}} = \mathbf{M}_{3} / \mathbf{M}_{2} = a \mathbf{M}_{3} / \mathbf{IWC} \quad \mathbf{v}_{\mathbf{m}} = \mathbf{A}\mathbf{D}_{\mathbf{m}}^{\mathbf{B}}$

 $V_m = A M_B$ ice : A = 1042 / B = 1.0 (SI units) snow : A = 14.3 / B = 0.416for each D the smallest v_t of both: ice D < 600 µm & snow D > 600 µm *Furtado et al. 2015 (F15)*

slope of v_m (F07-H13) & (F07-F15) same for tropical anvils & synoptic *(parameterization combines measurements)* compares well with synoptic cirrus of H13 2 A-B instead of 3 A-B : smaller v_m max values at 100 cm/s

Synthesis : v_m - D_e

Analytical expression of D_e:

 $D_{e} = 3/2 \text{ IWC} / (\rho_{tce} \int A(D) N(D) dD) = 3 a \Gamma(b+\mu+1) / (2 \rho_{tce} c \Gamma(d+\mu+1))$ uncertainties: a: 54%, c: 11%, b & d: < 10% (e.g. Erfani & Mitchell 2016)

 $-> D_e - v_m$ relationships from field campaigns:

