# Lidar-based technique for the observation of microphysical properties of liquid water clouds: Dual-FOV Polarization lidar

Cristofer Jimenez, Ronny Engelmann, Patric Seifert, Robert Wiesen, Martin Radenz and Albert Ansmann

Remote sensing department, Leibniz Institute for Tropospheric Research

ISTP, Toulouse, May 2019









### Contents

- Retrieval capabilities of a DFOV-Polarization lidar.
- Instrument and calibration.
- Measurement case.
- Contrast: Leipzig (Germany) vs. Punta Arenas (Chile)





Multiple scattering

Dual Field of View (FOV) Raman technique for cloud microphysics. Schmidt et al., Appl. Opt. 2013

(Schmidt et al., J.G.R. Atm. 2013; Schmidt et al.

### Lidar system MARTHA, Leipzig

### New measurement principle: Dual-FOV Depolarization





### New measurement principle: Dual-FOV Depolarization



#### Simulation results for a cloud at 2 km height

(to be submitted)

#### Best estimate up to 75 meters above cloud base:

Extinction coefficient:  $\alpha_{75}$ 

Effective radius:  $R_{75}$ 



Liquid water content:

Droplet number concentration:

$$LWC_{75} = \frac{2}{3}\rho_l \alpha_{75} R_{75}$$

$$N_d = \frac{1}{2\pi k} \alpha_{75} R_{75}^{-2}$$



### Implementation: Dual-FOV Depolarization





LACROS station





#### Calibration methods:

- MARTHA: Three-channel approach (*Jimenez et al., AMT 2019*)
- Polly XT: Δ90 rotation (Engelmann et al., 2016)

### **Relative calibration**

 $\delta_{in} \equiv \delta_{out}$  (cloud-free)



### Measurement case: Leipzig, 20-08-2018





Cristofer Jimenez: Observation of microphysical properties of liquid water clouds. Dual-FOV Polarization lidar

### Statistical analysis: comparison Leipzig and Punta Arenas

MARTHA system, Leipzig (51.3°N 12.4°E): 40 Hours, Spring-Summer-Autumn 2017

Polly system, Punta Arenas (53.2°S, 70.9°W): 55 Hours, Summer 2019 Measurement campaign: DACAPO-PESO

| -    | Values 75 above cloud base!    |                 |                 |  |
|------|--------------------------------|-----------------|-----------------|--|
| 1000 |                                | Leipzig         | Punta Arenas    |  |
|      | Extinction $(km^{-1})$         | 15.81 ± 6.35    | 9.82 ± 3.35     |  |
|      | Eff. Radius ( $\mu m$ )        | 5.80 ± 2.18     | 6.38 ± 1.91     |  |
|      | LWC ( $g m^{-3}$ )             | $0.06 \pm 0.03$ | $0.04 \pm 0.02$ |  |
|      | Nd ( <i>cm</i> <sup>-3</sup> ) | 97 <u>±</u> 46  | 53 <u>+</u> 29  |  |



Height-range averaged: 0.5 km step



### Summary

- A new dual-FOV depolarization approach was developed and implemented on two lidar instruments. Small instrumental upgrade is required
- High temporal resolution retrievals are possible with this technique.
- Strong contrast between Punta-Arenas and Leipzig in terms of cloud microphysics. Clouds in the continental conditions at Leipzig exhibit double amount of droplets than in the marine conditions at Punta Arenas.

### Next steps:

- Validation by comparison with other techniques.
- ACI considering vertical wind information: Downdraft and Updraft regime
- statistical analysis of the aerosol properties

## Thank you for your attention!





Statistical analysis: comparison Leipzig and Punta Arenas

MARTHA system, Leipzig (51.3°N 12.4°E): 40 Hours, Spring-Summer-Autumn 2017

Polly system, Punta Arenas (53.2°S, 70.9°W): 55 Hours - Summer 2019 measurement campaign: DACAPO-PESO



#### Histograms: Values 75 meters above C.B.





Cristofer Jimenez: Observation of microphysical properties of liquid water clouds. Dual-FOV Polarization lidar

### New measurement principle: Dual-FOV Depolarization



At MARTHA

Cristofer Jimenez: Observation of microphysical properties of liquidate points. Dual-FOV Polarization lidar







Cristofer Jimenez: Observation of microphysical properties of liquid water clouds. Dual-FOV Polarization lidar