Water Vapor Variability in the Tropics Observed by Airborne Lidar and Modelling

Christoph Kiemle¹ and Ann Kristin Naumann²

¹: DLR Oberpfaffenhofen, Institut f
ür Physik der Atmosph
äre
 ²: MPI for Meteorology, Hamburg, Germany

with contributions by Silke Gross and Martin Wirth (DLR), Daniel Klocke (MPI)

Tropics and trade wind regions are key to Earth's climate. Water vapor influences radiation, clouds, and circulation. Models have difficulties to reproduce the <u>shallow convection</u>.

Cloud layer humidity determines dilution of clouds by entrainment

<u>Vertical profile</u> of water vapor determines radiative cooling (e.g. Muller and Bony, 2015)

MODEL GRID CELE

Water Vapour Lidar Experiment in Space: Airborne Demonstrator on board HALO

WALES

- Differential Absorption Lidar, DIAL
- solid-state laser, OPO
- ➢ 8 W power at 935 nm
- High-Spectral-Resolution Lidar, HSRL
- > 3 onlines for full troposphere coverage

Tropical H₂O absorption line selection:

NARVAL Flight Experiment: Next Generation Aircraft Remote Sensing for Validation Studies

Lidar – Radar combination in view of ESA EarthCare

See contribution on Tuesday by S. Gross presented by M. Hagen

> W/m⁴ 600

Before 2010: combination with wind lidar for moisture

transport process studies on DLR Falcon aircraft

Water Vapour Lidar onboard HALO

Tropical HALO Flights:

North Atlantic, East of Barbados

Dec. 2013 Winter Trades Aug. 2016 Summer Trades

Jan. 2020 EUREC4A

NARVAL1 flights, Dec. 2013:

Equator

 N19°

 N17°

 N17°

 N15°

 W 59°
 W 55°

 W 53°
 W 51°

 W 49°
 W 47°

 W 45°
 W 43°

 N13°
 12.12.

Tropical Winter – Summer Differences

in specific humidity profiles from dropsondes

Fig. 2 Location of NARVAL-1 (orange) and NARVAL-2 (blue) sondes

Stevens, Brogniez, Kiemle, et al., Surv. Geophys. 2017

Summer Trades 12. Aug. 2016 MODIS 16:40 HALO track

Photos Bjorn Stevens

Flight report: "tenuous low clouds in a dusty atmosphere"

Summer Trades 12. Aug. 2016

NARVAL 12 Aug. 16: WALES – Dropsonde – ECMWF Comparison

How can we compare Lidar and model results?

- 1. Use average profiles across the domain: mean, variance, ...
- 2. Use correlation functions, spectra, ...
- 3. Sort all wv profiles from driest to wettest into "moisture space"

ICON model domains

 all simulations without convective parameterization

Max-Planck-Institut

für Meteorologie

- initial + boundary conditions: ECMWF reanalyses
- one-way nesting of higher resolution in low resolution simulations

Ann Kristin Naumann, Matthias Brück, Daniel Klocke, MPI for Meteorology, Hamburg

How can we compare Lidar and model results?

NARVAL1 HALO flight, 11. 12. 2013

MODIS 17:25 UT

11.12.13.: From the Trades into the ITCZ

How can we compare Lidar and model results?

Sort all wv profiles from driest to wettest into "moisture space"

Issue 1: Lidar misses 50 % of profiles, and even more at the moist end of the cumulative wvp distribution.

Issue 2: does ICON perform well?

Solution: use the collocated HALO **HAMP radiometer wvp** data to span up the full moisture space.

Then: tailor the ICON wvp distribution to match the Lidar wvp range.

Radiometer data from Marek Jacob, IGM, Univ. Köln

60

compressed WVP percentile

80

100

20

How can we compare Lidar and model results?

Sort all wv profiles from driest to wettest into "moisture space"

stretched WVP percentile

Are the cases representative? 3 flights in Dec 2013 3

3 flights in Aug 2016

Conclusions and Outlook

> Airborne lidar profiles in the Trades can quantify the humidity variability.

- > Lidar sees wv gradients, dry layers, and profiles in between clouds.
- ICON shows a good skill in reproducing the lidar wv path. Comparisons with lidar profiles show a moist model bias near the cloud layer top.
- > An additional wind lidar would be nice to quantify wv fluxes & transport.
- Our last proposal for an ESA Earth Explorer Water Vapor Lidar Mission was not yet successful, despite a very high scientific ranking.

