

Investigation of Ice Microphysics using Simultaneous Measurements at C- and Ka-Band

Knowledge for Tomorrow

Martin Hagen¹, Florian Ewald¹, Silke Groß¹, Qiang Li¹ Bernhard Mayer², Gregor Möller², Eleni Tetoni¹, Tobias Zinner²

¹ Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen, Germany ² Meteorologisches Institut, Ludwig-Maximilians-Universität München, Germany

Understanding Precipitation Initiation in Mixed Phase Clouds

Key Questions:

- when does precipitation initiation take place?
- when will ice be formed?
- how is precipitation initiation related to ice formation?

Understanding Precipitation Initiation in Mixed Phase Clouds

Radar point of view:

- dual-polarization hydrometeor classification
- reflectivity gives water / ice content
- ZDR, KDP, ... tells about particle habit

Limitation:

- weather radar (X-, C-, S-) is not sensitive enough for small cloud particles
- cloud radar (Ka- or W-band) is affected by Mie resonance effects and suffers from attenuation
- both can derive only partly microphysical quantities or particle habits

Synergetic Measurements Poldirad – miraMACS

Coordinated RHI Measurements Poldirad – miraMACS

- C-band weather radar
 (5.5 GHz, 250 kW)
- operated at DLR Oberpfaffenhofen
- ➤ 4.5 m antenna 1° beam-width
- range res. 150 m, max 120 km
- full polarimetric (STAR and AltHV) (ZDR, LDR, KDP, rho_{HV})

≻ MIRA35

scanning Ka-band cloud radar (35.2 GHz, 30 kW)

- operated at LMU Munich city
- 1 m antenna 0.6° beam-width
- ➤ range res. 30 m, max 22 km
- linear depolarization ratio LDR

STAR: simultaneous transmit and receive

AltHV: alternate transmit and receive horizontal and vertical

Example Measurement 2019-01-09 12:09

Example Measurement 2019-01-09 12:09

dual-polarization observations

MIRA

 LDR: linear depolarization ratio: → irregular shapes

POLDIRAD

- ZDR: differential reflectivity:
 → elongated particles
- depolarization signal to weak to be seen

Example Measurement 2017-02-08 09:08

Sensitivity Issue – MDS

Minimum detectable/discernible signal (MDS):

- ✓ C-band POLDIRAD:
 (1 µs pulse, 64 samples)
 ~ -26 dB at 5 km
 ~ -17 dB at 15 km
- ✓ Ka-band miraMACS:
 (0.2 µs pulse, 256 samples)
 ~ -40 dB at 5 km
 ~ -31 dB at 15 km

Median volume diameter D_m

→ dual-wavelength ratio $DWR = 58 D_m^{1.66}$ (Matrosov, 1998)

Ice water content IWC

→ e.g. Protat et al., 2007: $log_{10}(IWC) = a \cdot Z \cdot T + b \cdot Z + c \cdot T + d$ (*T* temperature, *Z* reflectivity Ka)

Particle shape and Particle size distribution

Iook-up tables derived from T-matrix simulations

Effective radius r_{eff}

→ known particle habits, DWR

T-Matrix Simulations of Ice Particle

Mass-size relationship

- spheroid approximation (Hogan et al., 2011)
- cylinder approximation

- → aspect ratios 0.6, 1, 1.4
- mass approximation based on various world-wide field campaigns (Brown and Francis, 1995)

$$\begin{split} \mathsf{M}(\mathsf{D}) &= 1.677 \ \mathrm{e}^{\text{-1}} \ \mathsf{D}^{2.91} \\ \mathsf{M}(\mathsf{D}) &= 1.66 \ \mathrm{e}^{\text{-3}} \ \mathsf{D}^{1.91} \\ \mathsf{M}(\mathsf{D}) &= 1.9241 \ \mathrm{e}^{\text{-3}} \ \mathsf{D}^{1.9} \end{split}$$

D <= 0.01 cm 0.01 < D <= 0.03 cm D > 0.03 cm

T-Matrix Simulations of Ice Particle

Particle size distribution

modified gamma function fitted to same in-situ data used for M(D) normalized by the volume-weighted diameter D_m and the intercept parameter N_0

(Delanoë et al., 2014)

Effective radius $r_{eff} = \frac{m(3)}{m(2)} = \frac{\text{volume}}{\text{area}}$

Profile at 16 km (2019-01-09 12:09)

T-matrix simulations for spheroid and cylinder ice particles

- using different particle axis ratios: 0.6, 1, 1.4
- using different size parameters of a gamma size distribution: 0 and 1

T-matrix simulations for spheroid and cylinder ice particles

- using different particle axis ratios: 0.6, 1, 1.4
- using different size parameters of a gamma size distribution: 0 and 1

Multi-Wavelength Microphysics Retrieval

Dual-polarization C- and Ka-band Retrieval:

reflectivity

- \rightarrow ice water content IWC
- dual-wavelength reflectivity ratio \rightarrow median volume diameter
 - \rightarrow effective radius of ice particles
 - → particle habit through T-matrix simulations

dual-polarization

- \rightarrow hydrometeor classification
- \rightarrow particle habit

The IcePolCKa project is sponsored within DFG SPP 2115 PROM

