

Using combined airborne high spectral resolution and differential absorption lidar and cloud radar measurements for ice cloud characterization

S. Groß<sup>1</sup>, M. Wirth<sup>1</sup>, F. Ewald<sup>1</sup>, Q. Cazenave<sup>1,2</sup>, <u>M. Hagen<sup>1</sup></u>, J. Delanoe<sup>2</sup>

<sup>1</sup>DLR Oberpfaffenhofen Institute of Atmospheric Physics, Germany <sup>2</sup>LATMOS, Gyuancourt, France







#### **Cirrus reflectivity**



### **Cirrus clouds:**

- Wide global coverage
- Large impact on Earth's radiation budget
- Impact dependent on optical, macro physical and microphysical properties
- Dependence of on life cycle and forming conditions highly uncertain





## **The DLR lidar system WALES** Airborne water vapor DIAL and HSRL, developed and build at DLR-IPA

### <u>Aerosol</u>

- Backscatter coefficient (532 nm,1064 nm)
- Color ratio (532 nm/1064 nm)
- Aerosol depolarization (532 nm,1064 nm)
- Aerosol extinction (532 nm HSRL)
- Resolution: range ~15 m, time = 1s
- $\rightarrow$  Possibility of aerosol classification
- → In-cloud and outside cloud distribution of relative humidity and water vapor

#### Esselborn et al., 2008; Wirth et al., 2009

### Water Vapor

- H<sub>2</sub>O mixing ratio
   (4 wavelengths ~935 nm)
- Resolution: range ~ 290m, time = 25s
- Relative humidity (in combination with external temperature data)





# Correlative Backscatter ratio and Relative Humidity observations



• Height-dependent Relative Humidity over ice (Rhi) distributions

ightarrow Lowest RHi values at upper part of the cloud

• 2-dim distribution of BackScatter Ratio (BSR) and RHi

→ No RHi values larger 120% outside cirrus cloud / Highest BSR at 100%

Groß et al., 2014 AMT







- Different height dependent RHi / joint BSR-RHi distribution for different cirrus clouds
- Differences in different stages of evolution / forming conditions
- → How do microphysical properties differ for different stages of evolution / forming conditions





## **Active remote sensing with HALO**

Combining lidar and radar for ice cloud observations

Schäfler et al., 2018





| HAMP (Cloud radar) |       | 19        |
|--------------------|-------|-----------|
| Wavelength         | 8 mm  | St.       |
| Transmit power     | 30 kW | Da Y      |
| Repetiton rate     | 6 kHz |           |
| Antenna            | 1 m   | the state |

- Sensitive to particle size
- Cloud penetrating
- Doppler velocity



Radar reflectivity Ζα D<sup>6</sup>

DIR

Lidar backscatter βαD<sup>2</sup>

- WALES (HSR Lidar)Wavelength532 nmTransmit power48 WRepetition rate100 HzTelescope48 cm
  - Sensitive to particle concentration
  - Resolves cloud tops
  - Water vapor DIAL



## Simultaneous measurements of ice cloud properties

### NAWDEX RF6 – 1 October 2016





## Joint occurrence of RHi and microphysical properties

NAWDEX RF06 01 October 2016

- Small ice particles with low IWC in upper part of the cloud (low temperature)
- Large IWC/ice particles at highest RHi values
- RHi distribution indicates cirrus cloud at mature or dissolving state





## Joint occurrence of RHi and microphysical properties

NARVAL-I RF12 18 January 2014

- Small ice particles with low IWC in upper part of the cloud (low temperature)
- Small IWC/ice particles at highest RHi values
- RHi distribution indicates cirrus cloud at early stage of life cycle







- Joint measurements of backscatter ratio and RHi

   → 2-D distribution different for cirrus clouds in different stages of evolution / of different formation mechanism
   But: Information on microphysical properties needed
- Combined radar and lidar measurements can be used to determine ice cloud microphysical properties

 $\rightarrow$  Synergistic retrieval to determine IWC and R<sub>eff</sub>

- First analysis of joint RHi-IWC-R<sub>eff</sub> distribution shows differences for different clouds (dependent on stage of evolution?)
  - $\rightarrow$  Large IWC/R<sub>eff</sub> at high RHi values for clouds in dissolving state
  - $\rightarrow$  Small R<sub>eff</sub> at high RHi for clouds in early stage of evolution
- More analysis of joint optical properties, RHi and microphysical properties needed and ongoing

