Investigating Raindrop Evaporation, Breakup, and Coalescence in Stratiform Rain

Support for this work: DOE Atmospheric Science Research (ASR) NASA Global Precipitation Measurement (GPM)

Presentation Outline

- 1. Vertically Pointing Radar (VPR) Observations
 - Green Ocean Amazon (GOAmazon) Field Campaign
 - Radar wind Profiler (RWP) at 1.2 GHz
 - mm-Wave Cloud Radar (W-band) at 94 GHz
- 2. Retrieve Raindrop Size Distribution
 - Exploit Rayleigh & "non-Rayleigh" scattering from raindrops
 - Convert DSD parameter N_w to N_t (to be more physical)
- 3. Vertical Decomposition Diagrams
 - Liquid Water Content $(q^{dB}, N_t^{dB}, D_q^{dB})$
 - 'Fingerprints' evaporation & breakup/coalescence
- 4. Next Steps

GoAmazon Field Site: Manous, Brazil

1.2 GHz Reflectivity [dBZ] Dwell: 2 second Repeat vertical beam every 12 seconds Beamwidth ~9°

Match W-band profiles every 2 sec

94 GHz

Signal/Noise [dB] Dwell: 2 second Repeat: every 2 seconds Beamwidth ~0.1°

1.2 GHz

1.2 GHzMReflectivity [dBZ]prDwell: 2 secondRepeat: every 12 seconds

Match W-band profiles every 2 sec

94 GHz

Mean Reflectivity Downward Velocity [m/s] (Positive values are downward)

1.2 GHz

Downward Velocity Difference (DVD) (RWP – W-band) [m/s]

94 GHz

Mean Reflectivity Downward Velocity [m/s] (Positive values are downward)

1.2 GHz

Downward Velocity Difference (DVD) (RWP – W-band) [m/s]

94 GHz

Mean Reflectivity Downward Velocity [m/s] (Positive values are downward)

1.2 GHz

Downward Velocity Difference (DDV) (RWP – W-band) [m/s]

94 GHz

Mean Reflectivity Downward Velocity [m/s] (Positive values are downward)

1.2 GHz

RWP (1.2 GHz) Spectra Profile at 6:00:02 UTC

Reflectivity spectral density

Units are: 10*log([Intensity/(m/s)) Intensity is relative power before calibration

Nyquist velocity 14 m/s

Spectrum at 1 km (Positive velocities are downward)

W-band (94 GHz) Spectra Profile at 6:00:02 UTC

Reflectivity spectral density

Units are: 10*log([Intensity/(m/s)) Intensity is received power after applying an engineering calibration

Nyquist velocity 6 m/s

Spectrum at 1 km (Positive velocities are downward)

W-band (94 GHz) Spectra Profile at 6:00:02 UTC

Reflectivity spectral density

Units are: 10*log([Intensity/(m/s)) Intensity is received power after applying an engineering calibration

RWP (1.2 GHz) & W-band (94 GHz) Spectra Profile at 6:00:02 UTC

Presentation Outline

- 1. Vertically Pointing Radar (VPR) Observations
 - Green Ocean Amazon (GOAmazon) Field Campaign
 - Radar wind Profiler (RWP) at 1.2 GHz
 - mm-Wave Cloud Radar (W-band) at 94 GHz
- 2. Retrieve Raindrop Size Distribution
 - Exploit Rayleigh & "non-Rayleigh" scattering from raindrops
 - Convert DSD parameter N_w to N_t (to be more physical)
- 3. Vertical Decomposition Diagrams
 - Liquid Water Content $(q^{dB}, N_t^{dB}, D_q^{dB})$
 - 'Fingerprints' evaporation & breakup/coalescence
- 4. Next Steps

DSD & Vertical Air Motion Retrieval Framework

Desire to Estimate four (4) Unknowns:

3 DSD Parameters: N_w , D_m , μ

1 Dynamic parameter: air motion, ω

Observations:

Measured Quantity	1.2 GHz Radar	94 GHz Radar
Spectra	Not Good for fitting (too noisy)	Good for fitting
Reflectivity	Good (calibrated with surface disdrometer)	Not Good (need to correct for path attenuation)
Mean Velocity	Good	Good
Spectrum Width	Not Good (DSD breadth and turbulence)	Good (but dependent on SNR)

Retrieval Steps:

- 1. Measure velocity difference: $\Delta v = v_{RWP} v_{Wband}$
- 2. Fit 94 GHz spectra with Δv constraint. Yeilds: D_m , μ , and air motion ω
- 3. Use Z_{RWP} with D_m and μ to estimate N_w

How are Doppler velocity spectra produced?

• Reflectivity factor of raindrop, with diameter *D*:

$$z(D) = \frac{\lambda^4}{\pi^5 |K_w|^2} \underline{N(D)} \underline{\sigma_b^{\lambda}(D)} \underline{\Delta D} \quad [\text{mm}^6 \text{ m}^{-3}]$$

$\frac{N(D)}{N(D)} - \text{Raindrop number concentration}$ Number of raindrops, per diameter, per cubic meter, which is expressed as: [# mm⁻¹ m⁻³] Also know as: raindrop size distribution (DSD) $\frac{\sigma_b^{\lambda}(D)}{Cross-sectional area} [mm^2] \text{ dependent on wavelength } \lambda$

 ΔD – Diameter interval [mm]

$\sigma_b^{\lambda}(D)$ – Radar backscattering cross-section

- Rayleigh scattering
 - $\sigma_b^{\lambda}(D) \sim D^6$: Radar wavelength is large relative to raindrop diameter
 - 1.2 GHz: all raindrops
 - 94 GHz: raindrops smaller than 1 mm diameter
- Mie Scattering ("non-Rayleigh" scattering)

 $\sigma_b^{\lambda}(D) < D^6$: Radar wavelength is similar to raindrop diameter

"Non-Rayleigh" indicates deviations from Rayleigh assumption.

Define DSD Parameters

- Assume
 - Gamma distribution
 - Full integrals: no small & large drop truncation
 - Parameters: N_w , D_m , μ

 $N(D) = N_w f(D; D_m, \mu) =$

$$N_w = N_0^*$$
 (Testud et al. 2001)

Define DSD Parameters

• Assume

 $N_w = N_0^*$ (Testud et al. 2001)

- Gamma distribution
- Full integrals: no small & large drop truncation
- Parameters: N_w , D_m , μ

$$N(D) = N_{w}f(D; D_{m}, \mu) = N_{w}\left(\frac{6}{4^{4}} \frac{(\mu + 4)^{\mu + 4}}{\Gamma(\mu + 4)}\right) \left(\frac{D}{D_{m}}\right)^{\mu} \exp\left(-\left(\mu + 4\right)\left(\frac{D}{D_{m}}\right)\right)$$

Define DSD Parameters

• Assume

 $N_w = N_0^*$ (Testud et al. 2001)

- Gamma distribution
- Full integrals: no small & large drop truncation
- Parameters: N_w , D_m , μ

$$N(D) = N_w f(D; D_m, \mu) = N_w \left(\frac{6}{4^4} \frac{(\mu + 4)^{\mu + 4}}{\Gamma(\mu + 4)}\right) \left(\frac{D}{D_m}\right)^{\mu} \exp\left(-\left(\mu + 4\right) \left(\frac{D}{D_m}\right)\right)$$
$$N_w = \frac{4^4}{\pi \rho_w} \left(\frac{q}{D_m^4}\right)$$

$$q = \frac{\pi \rho_w}{6x10^3} \int_0^\infty N(D) D^3 dD = \frac{\pi \rho_w}{6x10^3} M_3 \quad \text{Liquid water content (g m-3)}$$

$$D_m = \frac{\int_0^\infty N(D)D^4 dD}{\int_0^\infty N(D)D^3 dD} = \frac{M_4}{M_3}$$

Definition of N_w : Intercept parameter ($N_0 - #$ of drops with zero diameter) of an exponential distribution with the same liquid water content q and mean diameter D_m (Testud et al. 2001).

RWP (1.2 GHz) & W-band (94 GHz) Spectra Profile at 6:00:02 UTC

Expected Mean Downward Velocity Difference (DVD)

The mean radial velocity for both RWP and W-band are a function of D_m and μ .

Plot shows simulated downward radial velocity difference (DVD) as a function of D_m for a constant value of μ .

Expected Mean Downward Velocity Difference (DVD)

The mean radial velocity for both RWP and W-band are a function of D_m and μ .

Plot shows simulated downward radial velocity difference (DVD) as a function of D_m for a constant value of μ . For a given value of observed DVD (example DVD = 2 m/s)

For a measured DVD, there is a family of (D_m, μ) possible solutions.

Find Best Solution by Fitting to W-band Spectra

Blue lines are all possible (D_m, μ) solutions from observed DVD.

Red line is "best" fit by minimizing a cost function.

Find Best Solution by Fitting to W-band Spectra

Black line is observed Wband spectra

Red line is "best" fit by relative to observed W-band spectrum.

Blue line is RWP (Rayleigh) spectrum using "best" fit (D_m, μ) paramters.

Dark Blue line is estimated vertical air motion.

Find Best Solution by Fitting to W-band Spectra

Black line is observed Wband spectra

Red line is "best" fit by relative to observed W-band spectrum.

Blue line is RWP (Rayleigh) spectrum using "best" fit (D_m, μ) parameters.

Dark Blue line is estimated vertical air motion.

Step 3. Estimate N_w

Estimate N_w using:

- RWP measured reflectivity Z and
- retrieved D_m and μ parameters

$$z = \int \frac{\lambda^4}{\pi^5 |K_w|^2} N(D) \ \sigma_b^{\lambda}(D) \ \Delta D$$
$$z = N_w \int \frac{\lambda^4}{\pi^5 |K_w|^2} f(D; D_m, \mu) \ \sigma_b^{\lambda}(D) \ \Delta D$$

Reflectivity, N_w^{dB} & D_m

Converting N_w into N_t

- Normalized number concentration N_w :
 - Good for estimating DSD parameters
 - Good for comparing shape of DSDs
 - Not a 'physical' quantity
- Total number concentration N_t :
 - Total number of raindrops per cubic meter [# m⁻³]
 - Physical quantity
 - Map N_w to N_t : $N_t = N_w \frac{6}{4^4} \frac{(4+\mu)^3}{(\mu+3)(\mu+2)(\mu+1)} D_m$

$$N(D) = N_t g(D; D_m, \mu) =$$

N_w versus N_t

- Normalized number concentration N_w :
 - Good for estimating DSD parameters
 - Good for comparing shape of DSDs
 - Not a 'physical' quantity
- Total number concentration N_t :
 - Total number of raindrops per cubic meter
 - Physical quantity
 - Map N_w to N_t : $N_t = N_w \frac{6}{4^4} \frac{(4+\mu)^3}{(\mu+3)(\mu+2)(\mu+1)} D_m$

$$N(D) = N_t g(D; D_m, \mu) = N_t \left(\frac{(\mu + 4)^{\mu + 1}}{\Gamma(\mu + 1)D_m} \right) \left(\frac{D}{D_m} \right)^{\mu} \exp\left(-\left(\mu + 4\right) \left(\frac{D}{D_m} \right) \right)$$

From Tapiador et al. (2014), J. Hydrometeor.

Reflectivity, N_t^{dB} & D_m

Presentation Outline

- 1. Vertically Pointing Radar (VPR) Observations
 - Green Ocean Amazon (GOAmazon) Field Campaign
 - Radar wind Profiler (RWP) at 1.2 GHz
 - mm-Wave Cloud Radar (W-band) at 94 GHz
- 2. Retrieve Raindrop Size Distribution
 - Exploit Rayleigh & "non-Rayleigh" scattering from raindrops
 - Convert DSD parameter N_w to N_t (to be more physical)
- 3. Vertical Decomposition Diagrams
 - Liquid Water Content $(q^{dB}, N_t^{dB}, D_q^{dB})$
 - 'Fingerprints' evaporation & breakup/coalescence
- 4. Next Steps

LWC Decomposition using N_t

• Number concentration: scaled PDF

 $N(D) = N_t g(D; D_m, \mu)$

LWC Decomposition using N_t

• Number concentration: scaled PDF

 $N(D) = N_t g(D; D_m, \mu)$

• Liquid Water Content (LWC) [g m⁻³]:

$$q = N_t \frac{\pi}{6} \rho_w \sum_{D_i = D_{\min}}^{D_{\max}} g(D_i; D_m, \mu) D_i^3 \Delta D$$

LWC Decomposition using N_t

• Number concentration: scaled PDF

 $N(D) = N_t g(D; D_m, \mu)$

• Liquid Water Content (LWC) [g m⁻³]:

$$q = N_t \frac{\pi}{6} \rho_w \sum_{D_i = D_{\min}}^{D_{\max}} g(D_i; D_m, \mu) D_i^3 \Delta D$$

• LWC in logarithmic units [dB]: $q^{dB} = 10\log(q)$

$$q^{dB} = 10\log(N_t) + 10\log\left(\frac{\pi}{6}\rho_w\sum_{D_i=D_{\min}}^{D_{\max}}f(D_i; D_m, \mu)D_i^3\Delta D\right)$$
$$q^{dB} = N_t^{dB} + D_q^{dB}(D_m, \mu)$$

1 dB = 26% change 2 dB = 58% change 3 dB = factor of 2 change

Williams (2016) JTECH

 N_t^{dB} & D_a^{dB} dB

 N_t^{dB} & D_a^{dB} dB

Fall Streak Advection Correction

30 Profiles at 04:09 UTC (each 2 sec dwell)

+3 dB is a doubling —3 dB is a halving

30 Profiles at 04:09 UTC (each 2 sec dwell)

30 Profiles at 04:09 UTC (each 2 sec dwell)

+3 dB is a doubling -3 dB is a halving

From 3.5 to 0.5 km: $\Delta q^{dB} = -8dB$ $\Delta N_t^{dB} = -16dB$ $\Delta D_q^{dB} = +8dB$ $\Delta q^{dB} = \Delta N_t^{dB} + \Delta D_q^{dB}$

Colors represent height Lines are constant q^{dB}

Crossing of lines indicates evaporation or accretion

30 Profiles at 04:09 UTC (each 2 sec dwell)

+3 dB is a doubling -3 dB is a halving

From 3.5 to 0.5 km: $\Delta q^{dB} = -8dB$ $\Delta N_t^{dB} = -16dB$ $\Delta D_q^{dB} = +8dB$ $\Delta q^{dB} = \Delta N_t^{dB} + \Delta D_q^{dB}$

Colors represent height Lines are constant q^{dB}

Crossing of lines indicates evaporation or accretion

Next Steps

- Apply retrievals to full GoAmazon data set (18 Months)
- Relationships between $\Delta q^{\,dB}$, $\Delta N_t^{\,dB}$ & $\Delta D_q^{\,dB}$
 - Verify that decrease in N_t^{dB} and increase in D_q^{dB} is evaporation of small drops
 - Place retrievals and vertical structure into meteorological context
- Decomposition diagrams can be applied to model output
 - Use decomposition diagram to compare 1-, 2-moment and bin-microphysics schemes
- References
 - Vertical Decomposition Diagrams

Williams, C.R., JTECH, 2016, doi: 10.1175/JTECH-D-15-0208.1

• DSD retrievals using Doppler velocity difference

Williams, C.R., R.M. Beauchamp, and V. Chandrasekar, IEEE TGRS, 2016, doi: 10.1109/TGRS.2016.2580526

Backup Slides

Science Objective

Improve microphysical processes in numerical models

- Improve microphysical representations
 - 1-moment scheme
 - Numerically fast
 - Not very accurate
 - 2-moment schemes
 - Better representation of nature
 - May get the right answer for the wrong reason
 - Bin microphysics scheme
 - Best representation of nature
 - But really expensive (numerically)
- Processes act upon the falling raindrops
 - Evaporation & accretion (mass decrease or increase)
 - Breakup & coalescence processes (mass redistributed)

How can we use radar observations to improve model parameterizations?

RWP (1.2 GHz) & W-band (94 GHz) Spectra Profile at 6:00:02 UTC

Normalized DSDs

Observed Reflectivity & Retrieved Rain Rate

1.2 GHz Reflectivity [dBZ]

Retrievals are below brightband (4 km).

Retrieved Rain Rate [mm/hr] Dwell: 2 second Repeat: every 2 seconds

Reflectivity, Retrieved Rain Rate & Dm

Retrievals are below brightband (4 km).

Retrievals vs. Surface Parsivel Disdrometer

Liquid Water Content, N_w^{dB} & D_m

53

Retrieval Flow Diagram

See Williams et al. (2016) IEEE TGRS for details of 3/35 GHz retrieval method