Evaluation of WRF LES using UAS observations and Doppler lidar in a high sub-alpine desert valley

Dr James Pinto

Deputy Director, Research Applications Laboratory NCAR, Boulder

Anders Jensen¹, Pedro Jimenez¹, Domingo Munoz-Esparza¹, Katherine Glasheen², Sean Bailey^{3,8}, Phillip Chilson⁴, Jamey Jacob^{5,8}, Corey Dixon^{2,6}, Gijs de Boer^{2,7}, Suzanne Smith^{3,8}, Julie Lundquist²

¹NCAR ³University of Kentucky ⁵Oklahoma State Univeristy

²University of Colorado ⁴University of Oklahoma ⁸CLOUD-MAP

Motivation

Increasing need for microscale weather info

What are the requirements for micro weather information?

Planning time scales: 0-12hr Resolution: < 1 km Parameters: sensible weather in BL Domain: O(100 km) Uncertainty Information

2

Realtime Finescale Prediction Systems

WRF coupled with Urban LSM – 4 day nighttime T anomaly – for Amsterdam heat wave

LAPSE-RATE Field Experiment

- Period: 15-21 July 2018
- Location: San Luis Valley, South-central Colorado
- Boundary layer variability
- Drainage flows
- Valley Cl
- Flight Information
- 1287 flights
- 262 flight hours
- ➤ 50 UAS platforms

Model Configuration

Model Physics

- WSM Microphysics
- MYNN2 PBL D01 Only, D02 = WRF_LES
- NOAH LSM
- Builds on Munoz-Esparza et al 2017, 2018

D01

Domain 1

- 1 km resolution
- 487 x 637 x 45 gps

Domain 2

- 100 m resolution
- 1008 x 972 x 45 gps

Model Sensitivities

Test: 6h 0h D1 Spinup Period: 10 10 8 8 Wind Speed (m s-1) Wind Speed (m s-1) 6 6 2 2 0 0 5.0 5.2 6.0 5.0 5.4 5.6 5.8 5.2 5.8 5.4 5.6 6.0 Fractional Day Fractional Day (UTC) WRF LES Wspd: 10 60 120 240 m 0.8 **Physical Parameterizations:** 1-km domain WSM6 (a) Thompson-Eidhammer 111-m domain 0.6 qc (g kg⁻¹) Sensitivity of fog layer to 0.4 microphysics 0.2 0.0 10 12 8 14 16 6 3000 (b) 2500 Area (km²) 2000 1500 1000 500 10 12 14 16 6 UTC (hr)

Boundary Layer Variability

UKY

CU Ttwistor

Boundary Layer Variability

Boundary Layer Variability

LAPSE-RATE Field Experiment

- Period: 15-21 July 2018
- Location: San Luis Valley, South-central Colorado
 - Boundary layer variability
 - Drainage winds
 - Valley CI

Evolution of Drainage Winds in San Luis Valley

12 hour run valid: 06:00 – 18:00 UTC (00:00 – 12:00 LT) ~300 ft AGL

04V = ASOS at Saguache Airport

STP : Toulouse France May 2019

11

Evaluation of Finescale Model Winds

WRF LES vs Lidar

Comparisons of Wind Speed Profiles at Saguache Airport (SLV)

12

12

14

LΟ

14

m s-1

10.

9.

8.

7.

Drainage Flow Case Study

m s-1

- 75 UKY flights
 - 2 quadcopters
 - 3 fixed-wing platform
- 2 long duration orbits CU TTwistor

BlueCat Fixed Wing UAS

Evaluation of Modeled Wind Variability with UAS

Temporal Variations in Wind Speed

Impact of AMDAR Data on Fcst Error Reduction

Error Reduction per Observational Dataset (24 hour forecast)

UAS Data Assimilation

Impact on Low-level Winds

UAS DA results in 25%-50% reduction in mean error

NTIONAL CENTER FOR ATMOSFHERIC RESEARCH

18

Summary Points

- Meso-to-microscale coupling is critical for properly representing finescale evolution of boundary layer structures.
- Care must be taken to optimize configuration of M2M system.
- Assimilation of local scale observations will be needed to better constrain mesoscale forcing and to quantify uncertainties.

Temporal Variations in Wind Direction

Drainage flow Erosion

