

Operational Temperature and Humidity sounding from EUMETSAT hyperspectral missions

International Symposium Tropospheric Profiling 2019, Météo-France, Toulouse

> Thomas August, Tim Hultberg, Marc Crapeau, Stefan Stapelberg, Flavia Lenti, Cédric Goukenleuque, Dorothée Coppens

> > thomas.august@eumetsat.int



#### **Outline**

- EUMETSAT hyperspectral missions (current and future)
- T/q profiles + quality indicators, validation results
- EARS-IASI L2 Regional service
- Use in nowcasting:
  - Dialog with forecasters, ongoing studies
  - Preparing for future missions
  - Consolidate requirements







# **EUMETSAT**hyperspectral sounders









| IASI                                                                             | <b>IASI-NG</b>         |                   | MTG-IRS                |
|----------------------------------------------------------------------------------|------------------------|-------------------|------------------------|
| Low-Earth orbit sun-synchronous (~820km)                                         |                        | Orbit             | <b>Geo</b> stationnary |
| 2x2                                                                              | 4x4                    | Sensor            | 160x160                |
| 12 km                                                                            | 12 km                  | Spatial (Nadir)   | 4 km                   |
| 0.25 cm <sup>-1</sup>                                                            | 0.125 cm <sup>-1</sup> | Spectral sampling | ~0.6 cm <sup>-1</sup>  |
| 2x / day                                                                         | 2x /day                | Temporal          | Every 30 min Europe    |
| Metop-A 19 October 2006<br>Metop-B 17 September 2012<br>Metop-C 06 November 2018 | 2022                   |                   | 2023                   |

# The hyperspectral sounding Swiss knife

Temperature, **Humidity** profiles



Cloud mask, fraction, top height



**Sea surface** temperature



**Land surface** temperature and emissivity









**GHG** 



**Carbon monoxide** 



### From spectral to vertical resolution



# Temperature and quality indicator validation vs sondes



#### EARS-IASI L2, a new regional service – timely for nowcasting



- ✓ Direct broadcast stations
- √ Timeliness < 30' from sensing
  </p>
- ✓ Pilot phase since Nov. 2017



Statistical MW+IR retrievals (fast and accurate) 'All-sky' forecast-free products



#### Assimilation of IASI L2 T/q in regional NWP (AROME, Météo-France)

#### **Objectives:**

**Evaluate the feasibility and impact of assimilating the IASI L2 as pseudo-sondes in a regional model** 

#### First experiments in a nutshell:

- ✓ Overall agreement L2 vs AROME
- ✓ IASI L2 suitable for assimilation in NWP
- ✓ Data thinning: 160km horiz.; 1-in-3 level
- **✓** Positive impact on forecast biases *vs in situ* obs.
- **✓** Some negative effects at some levels/FCT-steps
- ✓ Error specs/vertical correlation is critical (diagonal error in these experiments)

Credits: Bruna Silveira, Vincent Guidard, Nadia Fourrié



"Potential benefits of assimilating Metop combined retrieval L2 products in AROME-France", EUM Conference Tallinn 2018



### DWD: case studies and routine monitoring of EARS-IASI L2

Case study: Cyclone Frederike 18/01/2018 (1 out of 3 cases)

Forecast: The regional model COSMO-DE predicted the development of a sting jet with gusts up to 170 km/h. The challenge for the forecaster was to decide if the sting jet would reach the ground resulting in fatal wind gusts.





Fig.6: Suomi NPP
VIIRS RGB image for
01-18-2018 11:30 UTC
(top) and selected
EARS-IASI L2
profiles (bottom)
from the areas of the
potential sting jet (1),
the cold jet (2) and
the cloud head (3).
Source: DWD

Credits: K. Hungershöfer et al. (DWD)

"Are EARS-IASI L2 products useful for Nowcasting?"

EUM User conference, Tallinn 2018

Conclusion: COSMO-DE overestimated the gusts, but the stratocumulus clouds in the satellite picture and the IASI-Soundings (showing strong boundary layer) gave hints that the Sting Jet would not reach the surface in the low lands.



# Conditional instability detection with IASI?





# Severe hail storms – Bordeaux Cognac 26/05/2018















# Wind, Lightning Hail storm in Dordogne – 04/07/2018









# Wind, Lightning, Hail storm in Dordogne – 04/07/2018



# Blend satellite + surface obs. for instability monitoring



- ! Hyperspectral infrared have low sensitivity and coarser vertical resolution near-surface
- → Impact surface-based instability indices
  - CAPE dynamic smaller than with sondes...
  - ? Enough to anticipate severe weather
- → Blend satellite profiles + surface obs (T/q)
  - **✓ FCT-independent obs. for forecasters**
  - ? Significance in relation to severe weather
  - ? Operational feasibility

Formerly studied at University of Wisconsin of Satellite-, Hodel-, and "Comparison of Satellite-, the Southern JAMC 2017, "Comparison of Satellite-, the Southern J. Gartzke et al., James Available Potential Energy in the Southern J. Gartzke et al., Padiosonde-Derived Convective Available Potential Energy in the Southern J. Gartzke et al., Padiosonde-Derived Convective Available Potential Energy in the Southern J. Gartzke et al., Padiosonde-Derived Convective Available Potential Energy in the Southern J. Gartzke et al., Padiosonde-Derived Convective Available Potential Energy in the Southern J. Gartzke et al., Padiosonde-Derived Convective Available Potential Energy in the Southern J. Gartzke et al., Padiosonde-Derived Convective Available Potential Energy in the Southern J. Gartzke et al., Padiosonde-Derived Convective Available Potential Energy in the Southern J. Gartzke et al., Padiosonde-Derived Convective Available Potential Energy in the Southern Potential Energy in the J. Gartzke et al., JAMC 2017, "Comparison of Satellite-, the Southern the Southern Available Potential Energy in the Southern Radiosonde-Derived R Great Plains Region"

# Excerpts from an early case study

- Deep convective thunderstorm
- Slovenian border
- 4 June 2018 at 10 UTC
- IASI overpasses 08:29 and 09:11
- ECMWF forecasts 8 and 9 UTC
- Blending IASI L2 (and NWP FCT) with ground-based to evaluate SBCAPE

Study team: Kalman Csirmaz, Zsofia Kocsis, Maria Putsay (OMSZ)









## MTG-IRS: unique 4D look into the atmosphere



# A full weather story with MTG



Evaluate the thermodynamic state before clouds form.

Gain precision and lead-time in the assessment of potential severe weather.















# **Summary - Outlook**

#### Merci pour votre attention!

#### **Retrieval methods**

- AI, machine learning...
- Physics modelling
- Instruments synergy, data fusion?
- New products, e.g. cloud μ-physics

#### **Validation / Monitoring**

**Need reference measurements:** 

- Traceable uncertainties
- Continuous streams
- Campaign opportunities?
- Challenges (methods/instruments)
  - ? Representativeness error
  - ? Validate T/q at 0.7K/5%
  - ? Cloud microphysics



**Products & Services** 

#### **Regional applications**

- √ Timely 'all-sky' T/q profiles
- > Studying pre-convection monitoring
- > Practical operational aspects
  - assimilation experiments
  - direct use, displaying information
  - blending satellite + surface obs
- > Consolidate requirements
  - √ dialog with forecasters
  - ? which parameters
  - ? forecast-dependency
- > IRS unique 4D look into atmosphere

Try out EARS-IASI L2!
Get ready for MTG-IRS!

