

Water vapour profiling by microwave radiometers: absorption model uncertainty and recent advancements

<u>Nico Cimini^{1,2}</u>, P. Rosenkranz³, M. Tretyakov⁴, M. Koshelev⁴, and F. Romano¹

¹CNR-IMAA, Italy ²CETEMPS, Italy ³MIT, USA ⁴IAP RAS, Russia

ISTP-11

domenico.cimini@imaa.cnr.it

C National Research Council of Italy

Introduction

Microwave Radiometer (MWR) provides:

- Low vertical resolution Temperature and Humidity profiles
- Integrated water vapor + liquid water path (IWV, LWP)
- high temporal resolution (~1min) and ~all weather

MWR applications require uncertainty characterization:

- Instrument
- Forward model (used for retrievals, validation, QC)
 - Radiative transfer
 - Atmospheric absorption model

WMO GRUAN (GCOS Reference Upper Air Network)

 Focus: characterizing the atmospheric absorption model uncertainty

Introduction

- Atmospheric absorption models
 - based on quantum mechanics theory
 - rely on parameterized equations using spectroscopic parameters
- Values of spectroscopic parameters are determined through
 - (i) theoretical calculations
 - (ii) laboratory experiments
 - (iii) field measurements
- Thus are inherently affected by uncertainty
 - Computational and/or experimental
 - Uncertainty propagates...

Approach

The analysis consists of four steps:

- 1. Review state-of-the-art of spectroscopic parameters and their uncertainties
- 2. Perform a **sensitivity study** to investigate the dominant uncertainty contribution to radiative transfer calculations
- 3. Estimate the full **uncertainty covariance matrix** for the dominant parameters
- 4. Propagate the uncertainty covariance matrix to estimate the uncertainty of simulated observations and atmospheric retrievals

- 1. Review state-of-the-art
- Take one RT model and absorption model
 - Here: RTE routines (NOAA) updated with Rosenkranz 2017*
 - But it could also be PAMTRA, ARTS, MonoRTM, AMSUTRAN,...
- List the used parameters (line & continuum absorption)
 - 21 for H_2O
 - 298 for O₂
- Uncertainties from 319 parameters were considered

*https://doi.org/10.21982/M81013

Toulouse, 23/05/2019

2. Sensitivity to model parameter uncertainty

Sensitivity to spectroscopic parameter uncertainty

 $T_B = F(p)$ $\Delta T_B = T_B(p_i) - T_B(p_i \pm \sigma_{pi})$

2. Sensitivity to model parameter uncertainty

• H₂O

• O₂

- Selected 6 dominating parameters (among 21)
- 3 for continuum (Cs, Cf, Xf)
- 3 for lines (γ, S, shift-broad ratio)
- Selected 105 dominating parameters (among 298)
- 1 for continuum
- 104 for lines (strength, broadening, mixing, mixing temp. dep.)

Toulouse, 23/05/2019

3. Uncertainty covariance matrix

 For the 111 dominant terms, we estimated the parameter uncertainty covariance Cov(p)

Water Vapor (6 parameters)

Oxygen (105 parameters)

Istituto di metodologie per l'analisi ambientale

ISTP-11

4. Uncertainty propagation

• Once Cov(p) is determined, we can map into $Cov(T_B)$:

 $\operatorname{Cov}(T_B) \cong K_p * \operatorname{Cov}(p) * K_p^T$

Total T_B uncertainty (full matrix)

Cimini et al, ACP 2018

58.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
57.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	0.5
56.66	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0		
54.94	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.4	0.2	0.0	0.0	0.0	0.0	-	0
^{53.86}	0.2	0.2	0.2	0.3	0.3	0.3	0.4	3.5	3.7	1.4	0.2	0.0	0.0	0.0	_	-0.5
52.28	0.7	0.8	0.8	0.9	0.9	1.0	1.3	10.5	10.9	3.7	0.4	0.1	0.0	0.0		
9 51.26	0.8	0.9	0.9	1.0	1.1	1.2	1.4	10.3	10.5	3.5	0.4	0.0	0.0	0.0	-	₀ (K ²) 1-
ට _{31.40}	0.3	0.3	0.3	0.3	0.3	0.4	0.4	1.4	1.3	0.4	0.0	0.0	0.0	0.0		-1.5
ud 14 127.84	0.2	0.2	0.3	0.3	0.3	0.3	0.4	1.2	1.0	0.3	0.0	0.0	0.0	0.0		
I 26.24	0.2	0.2	0.3	0.3	0.3	0.3	0.3	1.1	0.9	0.3	0.0	0.0	0.0	0.0	-	-2
25.44	0.2	0.2	0.3	0.3	0.3	0.3	0.3	1.0	0.9	0.3	0.0	0.0	0.0	0.0		2.5
23.84	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.9	0.8	0.2	0.0	0.0	0.0	0.0		-2.5
23.04	0.3	0.3	0.3	0.2	0.2	0.2	0.3	0.9	0.8	0.2	0.0	0.0	0.0	0.0	-	-3
22.24	0.3	0.3	0.2	0.2	0.2	0.2	0.3	0.8	0.7	0.2	0.0	0.0	0.0	0.0		

Full T_B uncertainty covariance matrix due to O_2 and H_2O parameter uncertainty

22.24 23.04 23.84 25.44 26.24 27.84 31.40 51.26 52.28 53.86 54.94 56.66 57.30 58.00 HATPRO Channel [GHz] istituto di metodologie per l'analisi ambientale

ISTP-11

4. Uncertainty propagation

• Once Cov(p) is determined, $Cov(T_B)$ can be easily computed:

 $\operatorname{Cov}(T_B) \cong K_p * \operatorname{Cov}(p) * K_p^T$

Toulouse, 23/05/2019

Extension to higher frequencies

- Extended to higher frequency (up to 150 GHz)
 - To include 90-150 GHz MWR used for low LWP retrievals
- New sensitivity study: 1 additional parameter to be considered

 n_{Cs} (wv self continuum T dependence exponent) contributing 0.2-0.6 K to T_{B} uncertainty at 70-150 GHz

Cimini et al, GMD 2019

Toulouse, 23/05/2019

Absorption model uncertainty

 For a well maintained MWR, absorption model uncertainty explains most of the observation minus simulation (O-S) differences

Investigation of systematic uncertainty

- Are there sources of systematic uncertainty in current MW absorption models?
- Speed-dependence of line shapes is currently not considered
 - collision probability (i.e. cross-section) slightly depends on molecular speed
- Recent laboratory measurements provides speed-dependence
 parameters
 - for 22 and 118 GHz lines (Koshelev et al., 2017; 2018)
 - for 183 GHz lines (Tretyakov 2019, personal comm.)

Toulouse, 23/05/2019

22 GHz line

Investigation of systematic uncertainty

Theory for MW speed-dependent line shape has been developed

50

*Rosenkranz & Cimini, submitted to TGRS, in review, 2019

Toulouse, 23/05/2019

Investigation of systematic uncertainty

• Does it make a big impact on T_B ? Hopefully not!

Toulouse, 23/05/2019

Investigation of systematic uncertainty

Does it make a big impact on T_B? Hopefully not! ^(C)

Investigation of systematic uncertainty

Impact on WV profile retrievals

changes sign with height

*Rosenkranz & Cimini, submitted to TGRS, in review, 2019

Investigation of systematic uncertainty

- Impact on WV profile retrievals
- SD comparable to other uncertainty contributions

Speed-dependance

contribution

- But SD is systematic!
- e.g. it implies a (-1.1%) negative bias in ARM 2-channel IWV retrievals

Summary and future work

- Absorption model uncertainty for ground-based MW simulations has been quantified in the 20-150 GHz range
- A source of systematic uncertainty has been identified and quantified (Speed-Dependent line profile)
 - Impact comparable to other uncertainty contributions
 - Implies ~1% negative bias in IWV 2-channel retrievals
- Currently extending both analysis (spectroscopic uncertainty and speed-dependence) to satellite-based simulations (up to 700 GHz)

Thank you very much for your attention!

GRUAN

- GRUAN: GCOS (Global Climate Observing System) Reference
 Upper Air Network
- GRUAN delivers reference-quality measurement of essential climate variables (ECVs), for which the uncertainty contributions are carefully evaluated
 - Radiosonde observations (Dirksen et al., 2014)
 - Plans for ground-based MWR profilers
- MWR adds value to GRUAN by providing redundant measurements with respect to radiosondes, but covering the complete diurnal cycle at high (e.g., 1 min)
- Uncertainty for MWR retrievals have been reviewed
 - GRUAN-related GAIA-CLIM project
 - Spectroscopic parameter uncertainty was found to be the least investigated among all

3. Uncertainty covariance matrix

Just one example:

- Oxygen line-broadening parameters
 - Coefficients with N > N_{*} are determined through linear extrapolation of measured coefficients (N < N_{*})

$$\gamma_N = \gamma_* + (N - N_*)\mu$$

pivot values: γ_* , N_*

N is the O₂ rotational quantum number

• The extrapolation introduces correlations among the coefficients

4. Uncertainty propagation

• Contributions T_B uncertainty

Tropical atmosphere

4. Uncertainty propagation

• Off-diagonal terms contributions to T_B uncertainty

2. Missing MW absorption model uncertainty

Retrieval impact

- S = M + N + P
- $M = D_{y}S_{\epsilon}D_{y}^{T}$ $N = (A I)S_{a}(A I)^{T}$ $P = (D_{y}K_{b})S_{p}(D_{y}K_{b})^{T}$

Total retrieval error covariance matrix (considering model parameter contribution)

Retrieval measurements error covariance matrix Smoothing error covariance matrix

Model parameter error covariance matrix

 $D_y = \partial I(y) / \partial y$ $A = D_y K_x$

Contribution function matrix (i.e. Jacobian of the inverse model with respect to the measurement) Averaging kernel matrix

Toulouse, 23/05/2019

Extending to higher frequency + satellite

• WV continuum coeff. & T expon.

Perturbed parameter: H₂O n_{cf} (emiss_{srf}=0.6)

Frequency (GHz)

Surface emissivity = 0.6

Perturbed parameter: H₂O n_{cs} (emiss_{srf}=0.6)

Toulouse, 23/05/2019

Extending to higher frequency + satellite

• WV continuum coeff. & T expon.

-1.5

-2

0

100

200

-2.5

300

Frequency (GHz)

400

500

600

700

Surface emissivity = 0.6

