

The DWD project for evaluating ground-based remote sensing systems for future network deployment

C. Knist, V. Lehmann and M. Kayser

Lindenberg Meteorological Observatory - Richard Aßmann Observatory Deutscher Wetterdienst (DWD), Germany

Improving very short range convective-scale forecasting

→ requires more detailed and continuous boundary-layer profiles of temperature, wind and humidity

WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction, 2016

Ground-based remote sensing

Which methods are fit for operational use?

What are the requirements for operational network deployment?

Requirements for operational network deployment

DWD

Theoretical and practical understanding

- sufficient knowledge of the "real-world" measurement process
- well-defined measurand, known error statistic, well-tested algorithms (e.g. retrievals)

24/7 all weather operation

- fully automated operation
- rugged design

Availability

- commercially available
- sustainable operation over 10+ years (spare parts, software support)

Practicality

- radars: Available RF spectrum, compliance with regulations
- lidars: Eye-safety
- proven systems
- reliable and robust calibration methods (if necessary)

Usefulness

"acceptable" cost-benefit relation, measurable positive impact in NWP

Instrument assessment for network deployment

DWD Working groups:

Observatory Lindenberg, Data Assimilation, Observing Networks/Data, Service and Logistics

5

Test and evaluation of following methods are in progress:

Technology	Variables measured
Water vapor DIAL (active optical)	water vapor mixing ratio
Microwave radiometer (passive radiowave)	brightness temperature, temperature, water vapor, liquid water path (LWP)
Raman lidar (active optical)	temperature, water vapor
Doppler lidar (active optical)	wind (u,v)
Cloud radar (active radiowave)	cloud properties (e.g. cloud base/top)

DIAL Differential Absorption Lidar (active, optical)

Wavelength: dual, submicron

 \rightarrow Water vapor mixing ratio profile

maximal height coverage: **3 km** nominal vertical resolution: **> 100 m** Time resolution: **20 min**

Availability:

- beta-version operating since 22nd Jan 2019
- commercial version available soon

24/7 all weather operation:

- yes, limited availability in and above optically thick clouds
- rugged design

Practicality:

- easy to deploy, fully autonomous operation
- laser class 1M (eye safe)
- no calibration problem for DIAL method

Attenuated backscatter: dt=1 min, dh=1.4 m

Mixing ratio: dt=1 min (20-min averaging), dh=4.9 m

More details? Presentation Session 3, R. LEHTINEN et al.

Performance aspects: e.g.

accuracy water vapor measurements:

- comparison with radiosonde ascents (4/day)
- comparison with Raman lidar RAMSES

attenuated backscatter profiles:

→ further evaluation: hardware/software reliability, robustness, operational sustainability, retrieval skill...

Microwave Radiometer (passive, radiowave)

14 to 22 channels: k-band 22 to 31 GHz, v-band 51 to 58 GHz

→ Brightness temperatures (T_b) → Temperature and water vapor profile, LWP

maximal height coverage: **10 km** nominal vertical resolution: **rather coarse** time resolution: **< 1 min**

Availability:

commercially available for decades

24/7 all weather operation:

- yes, except rain (wet radome)
- rugged design

Practicality:

- easy to deploy, fully autonomous operation
- regular calibration using LN2 still issues !
- retrieval algorithm: Inverse problem (ill-posed)

9

Measurement: mwr_rao, 181022, Elev. = [89.0, 91.0]

Microwave Radiometer -- Evaluation

Performance aspects: e.g.

Stability of calibrations:

- Observation minus Background (O-B) statistics:
- TOPROF, P. Martinet: pauline.martinet@meteo.fr
- Background: Model:
 AROME-Erance with 1h rani

AROME-France with 1h rapid update forward model: RTTOV-ground-based (De Angelis et al. 2017, AMT)

Practicality of LN2 calibrations in a network? Limitations, faulty calibration?

→ further evaluation: hardware/software reliability, robustness, sustainability, retrieval skill...

O-B: Poster Session 2, P. MARTINET et al.

Wavelength: 1,5 µm

\rightarrow Horizontal wind profile (u, v)

maximal height coverage: **10 km** nominal vertical resolution: **20 - 50 m** time resolution: **10 – 30 min**

Availability:

• commercially available

24/7 all weather operation:

- yes, limited availability in and above thick clouds or particle-free atmosphere (no targets)
- rugged design

Practicality:

- easy to deploy, fully autonomous operation
- laser class 1M (eyesafe)
- no calibration problem

→ further evaluation: hardware/software reliability, robustness, sustainability, retrieval skill...

Performance aspects: e.g. accuracy wind speed:

11

overarching goal is to improve nowcast and very-short range NWP

 \rightarrow extension of the DWD observing network using ground-based remote sensing

Acknowledgements

- Ronny Leinweber, Krispin Bisek DWD Lindenberg
- Dr. Ulrich Blahak DWD, Data Assimilation

Performance aspects: e.g.

accuracy water vapor measurements:

- comparison with radiosonde ascents (4/day)
- comparison with Raman lidar RAMSES

attenuated backscatter profiles:

→ further evaluation: hardware/software reliability, robustness, operational sustainability, retrieval skill...

