

Cloud radar spectral polarimetry for atmospheric research

Alexander Myagkov and Thomas Rose

Radiometer Physics GmbH, Germany

Acknowledgements: Stefan Kneifel (Uni Cologne, Germany) Dmitri Moisseev (Uni Helsinki, Finland) Alessandro Battaglia (Uni Leicester, GB)

Alexander Myagkov, alexander.myagkov@radiometer-physics.de, ISTP 2019, 20 - 24 May 2019, Toulouse, France

Weather radar (cm-wavelength) polarimetry

Weather radar (cm-wavelength) polarimetry

Weather radar (cm-wavelength) polarimetry

See Kumjian 2013, J. Operational Meteor. For more details

Cloud radar (mm-wavelength) polarimetry

Observations at 30° elevation

- ning radar
- 94 GHz scanning radar
- STSR mode (Myagkov et al 2016, AMT)
- Rain event with intensity up to 15 mm/hr
- Backscattering signatures in melting layer
- ZDR in rain <0.2 dB
- PHI in rain up to 3 deg
- KDP signatures in ice area

Rain

Cloud radar (mm-wavelength) polarimetry

Observations at 30° elevation

No signatures in <u>integrated</u> polarimetric variables in rain

Are polarimetric observations at 94 GHz in rain useless?

6

Polarimetric "oscillations"

Polarimetric oscillations for a water spheroid

Case study, 9 June 2018, 21:20 UTC

 Observations at low elevation angles are strongly influenced by air motions

Case study, 9 June 2018, 21:20 UTC

Rough mitigation of wind effects

Case study, 9 June 2018, 21:20 UTC

Rough mitigation of wind effects

Observations at

30° elevation

Polarimetric oscillations!

Comparison of model and observations

Rain microphysical processes (similar to F. Tridon and C. Williams)

Ice

KDP signatures in ice area

Spectral observations

Spectral polarimetry resolves different types of particles in a volume 16

Applications of spectral polarimetry

Data processing:

- Separation of backscattering and propagation effects
- Absolute radar calibration (manuscript in preparation with S. Kneifel)

Rain:

- DSD profiling (at relatively low elevations)
- Rain microphysical processes (similar to F. Tridon and C. Williams)

lce:

- Detection of secondary ice production
- Detailed quantitative characterization of 'pristine' ice particles (incl. shape, size, concentration)

For more details contact alexander.myagkov@radiometer-physics.de

Supplementary slides

