Doppler lidar telescope focus correction to obtain reliable attenuated backscatter profiles

P. Pentikäinen¹
P. Ortiz-Amezcua²,³
A. Manninen⁴
E. O’Connor⁴,⁵

1. University of Helsinki, Finland
2. Andalusian Institute for Earth System Research (IISTA-CEAMA), Granada, Spain
3. Department of Applied Physics, University of Granada, Granada, Spain
4. Finnish Meteorological Institute, Finland
5. Department of Meteorology, University of Reading, UK

pyry.pentikainen@helsinki.fi
Why focus the DL beam?

• Benefits
 – Velocity uncertainty depends on SNR
 • Improve sensitivity in the BL
 • Improve Doppler velocity accuracy
 • Improve data availability in the BL

• Issue
 – Instrument provides profile of signal, not attenuated backscatter
Telescope function - SNR
Impact of focus

Attenuated Backscatter - ARM-Darwin - 7.10.2012

pyry.pentikainen@helsinki.fi
Impact of focus

Attenuated Backscatter - ARM-Darwin - 7.10.2012
Telescope focus function

- The telescope focus can be modified
 - From infinity to 200 m
- We have an analytical expression for the function
- Two important variables – Focus and lens diameter
 - Note that the apparent focus differs from the actual telescope focus
 - Estimation by eye can be inaccurate
Same lens diameter – 7 cm

Telescope Focus Function with different instrument focuses

pyry.pentikainen@helsinki.fi
Same focus – 1 km

Telescope Focus Function with different lens diameters

Range - m

0 200 400 600 800 1000 1200 1400 1600
Motivation

- We want to estimate the two parameters of the function
 - Obtain telescope function $T_f(r)$
 - Obtain attenuated backscatter profile
 - $\beta'(r) = C \, S(r) \, T_f(r)$
- Understand how variable these parameters are
 - Uncertainty in telescope function
 - Uncertainty in attenuated backscatter profile
Method for deriving $T_f(r)$

- Compare DL to a collocated Ceilometer
 - Profile shape, not absolute values
 - Don’t require absolutely calibrated ceilometer
- Filter out all profiles not suitable for comparison
 - Profiles with precipitation, clouds, layered situations
 - Profiles without enough signal
- Iteratively correct the DL profile with all possible parameter combinations in our search space
- Select the parameters that create the best fit
Why not just the ceilometer?

- Obtain uncertainties
- Correct scanning data
- Possibility to remove the ceilometer after $T_f(r)$ is known
- Dual wavelength data on precipitation and clouds
Longer timeseries

- More reliable estimation of uncertainties
- Observe how much do $T_f(r)$ parameters vary
- Detect changes in the instrument settings, instrument swap, or instrument issues
Longer timeseries

ARM-SPG - Lens Diameter

PYRY.PENTIKAINEN@HELSINKI.FI
Generate 2-D histograms

![ARM-Darwin - Focus](image-url)
Uncertainty estimates

- Parameter variance from histograms
 - Explain parameter uncertainty
 - Assume Gaussian and orthogonal

- Uncertainty in telescope function
 - Propagate uncertainty

- Caution
 - Distribution not exactly Gaussian - slightly asymmetric
 - Not quite orthogonal
Before focus correction
After focus correction

Shape corrected attenuated backscatter - ARM-Darwin - 7.10.2012
Summary

- Method for estimating telescope focus function parameters from data
 - Provide reliable attenuated backscatter profiles
 - Provides uncertainties in $T_f(r)$
 - Detection of instrument issues or changes in settings