A multi-instrument cross-validation of infrared thermodynamic profilers

Timothy J. Wagner

Space Science and Engineering Center University of Wisconsin – Madison Madison, Wisconsin, USA

David D. Turner

LO Photonics

TERNER

Global Systems Division NOAA Earth Systems Research Laboratory Boulder, Colorado, USA

Operational Networks Need Repeatability

Why do two identical instruments in different locations produce different observations? Atmospheric conditions are different But what about instrument variablity?

For in situ instruments, this is easy to test: put them in a calibration lab.

LAFE gave us a rare opportunity: three AERIs in basically the same location... with 4x daily sonde launches!

Our Three AERIs

All three AERIs within 2 km horizontally and 15 m vertically.

Balloons launched next to ARM AERI.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	325
3 martan	320
	315 E
CLAMPS V4	/ation
~	305 ¹
L	300
	295

### **AERIOE:** AERI optimal estimation retrieval

AERIoe (Turner and Löhnert 2014, Turner and Blumberg 2018): Modified optimal estimation retrieval

- includes uncertainties and information content
- includes  $\gamma$  factor to increase convergence rate
- Retrieves profiles of temperature and moisture most information content below 3 km
- A priori information comes from 10+ year climatology of radiosondes
- Uses LBLRTM as its forward model
- Capable of retrieving profiles below cloud base
- Also retrieves cloud properties
  - Liquid water path
  - Droplet effective radius

### Making the comparisons

Retrievals need to be as consistent as possible

- Same configuration file for AERIoe •
- Same version of LBLRTM (12.1) ullet
- Same external cloud base height observations •

Cloud impacts minimized by cutting off retrievals at ¹/₂ vertical resolution below observed cloud base

AERI profile heights adjusted to be at same height relative to MSL for all 3 instruments.

Sondes smoothed according to:  $\mathbf{x}_{\text{sonde}}^{\text{smoothed}} = \mathbf{A}(\mathbf{x}_{\text{sonde}} - \mathbf{x}_{a}) + \mathbf{x}_{a}$ 



### **AERI vs. Radiosondes**





### **AERI vs. Radiosondes**



ALO PI



### Judging the Fit





## Judging the Fit



### **Taylor Plots: Temperature**

![](_page_9_Figure_1.jpeg)

ALO Photonic

![](_page_9_Picture_2.jpeg)

![](_page_9_Picture_3.jpeg)

### **Taylor Plots: Mixing Ratio**

![](_page_10_Figure_1.jpeg)

ALO Photonia

![](_page_10_Picture_2.jpeg)

![](_page_10_Picture_4.jpeg)

![](_page_10_Picture_6.jpeg)

![](_page_11_Picture_0.jpeg)

- AERIs show excellent agreement with sondes ightarrow
  - Mean bias for T < 0.5 K at all heights below 3 km
  - Mean bias for q 0.8 < g/kg at all heights below 3 km  $\bullet$
  - These are within the uncertainty of the sonde itself  $\bullet$
- AERIs show excellent agreement with each other ightarrow
  - Profiles of pearson's correlation coefficient r is great!
    - Better than 0.9 for T below 2 km
    - Better than 0.8 for q below 2 km  $\bullet$ 
      - We'd expect q to be less correlated

Taylor Analysis shows that instruments tend to retrieve the same shape as well.

# Thank you! tim.wagner@ssec.wisc.edu

![](_page_11_Picture_16.jpeg)

![](_page_11_Picture_17.jpeg)