

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Towards understanding aerosol transport with a Doppler lidar

Ewan O'Connor

برنامے الإمارات ليحوث عطوم الانستمطار UAE Research Program for Rain Enhancement Science

Aerosol transport - Doppler lidar

- Doppler lidar
 - Boundary layer dynamics
 - Combine turbulence and wind
 - Boundary layer classification
 - Turbulent source
 - Aerosol transport
 - Vertical fluxes
 - Horizontal advection
 - Combination e.g. low-level-jets

Vertical transport

- Flux from surface
 - 'Normal' Aerosol (<< 1µm)
 - Generated in-situ NPF and growth
 - Larger aerosol Aeolian transport
 - Saltation or suspension
 - Scales with u³ above friction velocity u^{*}
- Flux to surface
 - Sedimentation or deposition

Convective Boundary layer

Turbulent, wellmixed

Dilution in concentration

Vertical fluxes

- Campaigns during ACTRIS
 - Tower-based in-situ aerosol fluxes
 - Lidar-based fluxes

•
$$F_a = \overline{m'w'}$$

Vertical fluxes

- Campaigns during ACTRIS
 - Tower-based in-situ aerosol fluxes
 - Lidar-based fluxes

•
$$F_a = \overline{m'w'}$$

•
$$F_a = \frac{\overline{m}}{\overline{\beta}} \overline{\beta' w'}$$
,

Assuming
$$\frac{\beta'}{\overline{\beta}} = \frac{m'}{\overline{m}}$$
 (Engelmann et al., 2008)

Košetice - view from tower top

Vertical fluxes

- Campaigns during ACTRIS
 - Tower-based in-situ aerosol fluxes
 - Lidar-based fluxes
 - 10^{0} 10.1 10^{-2} Height (km) °. 10° ື∈ 10"† 10.5 10.6 Košetice, Czech Republic 10.7 00:00 04:00 08:00 6:00 20:00 00:00 FMI HALO Doppler lidar Time (UTC) 1.35 μg/(m² s) -1.35 0 2000 2000 t 2000 Entrainment н 1500 H e 1500 H e 1500 flux 1000 1000 1000 m m m 500 500 500 Surface flux 0 -1E-4 -5E-5 0 5E-5 1E-4 covar BSC',w', 1/kmsr*m/s -1E-4 -5E-5 0 5E-5 1E-4 covar BSC',w', 1/kmsr*m/s -1E-4 -5E-5 0 5E-5 1E-4 covar BSC',w', 1/kmsr*m/s 1300 - 1500 UTC 1500 - 1630 UTC 1630 - 1800 UTC

23 Aug 2017

Vertical fluxes

- Campaigns during ACTRIS
 - Tower-based in-situ aerosol fluxes
 - Lidar-based fluxes

Saltation process

Nickling and McKenna Neuman (2009)

Re-suspended ash/dust

Re-suspended ash/dust: NCAS DL at Hatun

Re-suspended ash/dust: NCAS DL at Hatun

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Re-suspended ash/dust: Iceland

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Suspension process

Nickling WG, McTainsh GH, and Leys JF (1999)

but prefactor?

Suspension process

Nickling WG, McTainsh GH, and Leys JF (1999)

OASIS measurement campaign, UAE

Hannele Korhonen¹, Jutta Kesti¹, John Backman¹, Timo Anttila¹, Heikki Lihavainen^{1,3}, Antti-Pekka Hyvärinen¹, Mika Komppula⁴, Maria Filioglou⁴, Xiaoxia Shang⁴, Farah Abdi⁵ and Siddharth Tampi⁶

¹FMI, Helsinki, Finland; ²Univ. of Reading, UK ; ³SIOS, Longyearbyen, Svalbard; ⁴FMI, Kuopio, Finland; ⁵United Arab Emirates University, Al Ain, UAE; ⁶National Center for Meteorology, Abu Dhabi, UAE

Rapid increase in aerosol

Rapid increase in aerosol

Synoptic scale – Haboob

Example from aircraft

Outlook

- Doppler lidar provides boundary layer dynamics
 - Investigate both vertical and horizontal transport terms
- Require transfer function to relate attenuated backscatter to mass
 - Need additional information
 - Colocated multiwavelength Raman lidar
 - In-situ tower or surface measurements
 - Sun photometer
- Evaluate and assist transport models

Elevated layers

Elevated and residual layers present

FINNISH METEOROLOGICAL INSTITUTE

Elevated layers

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL IN

Elevated layers

Low level jets

Increase in wind speed near surface

FINNISH METEOROLOGICAL INSTITUTE

Outlook

- Doppler lidar provides boundary layer dynamics
 - Investigate both vertical and horizontal transport terms
- Require transfer function to relate attenuated backscatter to mass
 - Need additional information
 - Colocated multiwavelength Raman lidar
 - In-situ tower or surface measurements
 - Sun photometer
- Evaluate and assist transport models

