

LOTOS (LOwer Troposphere Observing System): A proposed instrument suite

Tammy Weckwerth, Steve Oncley, Bill Brown, Britt Stephens, Terry Hock, Wen-Chau Lee, Alison Rockwell and Vanda Grubišić

NCA

Earth Observing Laboratory National Center for Atmospheric Research

11th International Symposium on Tropospheric Profiling

NCA | Lower Troposphere Observing System

LOTOS is:

 Proposed as a configurable and scalable integrated suite of automated ground-based in-situ and remote sensors for weather and climate research

LOTOS is designed to:

- Provide quasi-3-D sensing of the lower troposphere with horizontal distribution of properties at the Earth's surface
- $_{\odot}$ Provide U, T and WV profiles from five nodes
- Provide multiple observations of exchange processes across the land-surface interface and between BL and the free atmosphere

NCA | LOTOS Components Complementary in-situ and remote sensors

NCA LOTOS Profiling: Water Vapor & Temperature NPD Development

Window

- Two tunable wavelengths (Near IR: 828 nm)
- Water Vapor Micro-Pulse DIAL (MPD) for measuring vertical profiles of water vapor up to 3-5 km AGL
- Network of five MPDs current testing in U.S. Southern Great Plains
- Calibrated aerosol addition via HSRL (780 nm)
- Surface Sensor (T, P, RH) Optical Bench AC and Heat Vibration isolators Diode Lasers 40 cm Newtonian Telescope

Electronics

Cell Modem

- Antenna

• Efforts toward temperature MPD (770 nm)

- Water vapor concentration at 150 m vertical and 5 min temporal resolution
- From 300 m to 3-5 km (or cloud base) in day, night and cloudy conditions

14 days from RELAMPAGO, 2018 in Pilar, Argentina

NCA | LOTOS Profiling: MPD NPD Validation

- Excellent comparisons with radiosondes, MWRP, AERI and GPS receivers providing PWV
- Elevated layers of moisture observed by MPD but not by passive remote sensing systems
- MPD + AERI are complementary

LOTOS Profiling: MPD Network of five MPDs

- Relative backscatter varies due to different Tx and Rx efficiencies
- WV is consistent! *Courtesy Robert Stillwell (EOL)*

- 6-10 April 2019
- All: WV
- MPD 02: WV, HSRL
- MPD 05: WV, HSRL, Temp (prototype)

LOTOS Profiling: MPD Network of five MPDs at DOE/ARM/SGP

• 26-30 April 2019
• Consistent WV pattern
• Development of CBL

Photo courtesy R. Stillwell (NCAR

Adding Temperature Profiling

Bunn, Repasky, Hayman, Stillwell and Spuler, 2018, *Applied Optics*

- Use DIAL technique to measure oxygen A-band absorption
- Number density of O₂ profile estimated from surface temperature and pressure
- Must correct for water vapor (available from water vapor MPD)
- Must correct for Rayleigh-Doppler broadening (available from HSRL MPD)
- Solve for temperature profiles!

Courtesy Robert Stillwell (EOL)

EARTH OBSERVING LABORATORY

- NCAR/EOL developed radar wind profiler
- Operates at 449 MHz (other frequency options are also proposed)
- Spaced antenna for rapid wind measurement
- Modular design enables scalability and flexibility
- Please see Bill Brown's talk today final talk of the conference at 1145

Boundary Layer Configuration 3 antenna modules Range: 150 m – 4 km Resolution: 30 - 100 m

Mid Troposphere Configuration 7 antenna modules Range: 200 m – 7 km Resolution: 50 - 200 m

19-module version for full troposphere

- $_{\odot}$ Up to 80 surface flux stations
- Extending observations to complex land surfaces
- Information on the surface and subsurface mean state and surface exchange processes of U, T, WV, and CO₂ and CH₄
- $_{\odot}$ All digital sensors and wireless data transfer

NCA R UCA

perai

ater vapo

- EOL has some components, some to be developed, some to be purchased
- Unique capabilities

water vapor

- Combination of complementary sensors into one integrated system
- Automation and unattended operations

rature

Der

- Real-time integration of datasets for data analysis, data quality and data assimilation
- Potential for 3-D observations of wind, T, WV and fluxes, including CO₂ and CH₄

How would you use LOTOS?

tammy@ucar.edu

11th International Symposium on Tropospheric Profiling

Extra slides

11th International Symposium on Tropospheric Profiling

Developing low-cost laser remote sensing to provide unattended, continuous, high vertical resolution profiles of water vapor and temperature (future) MPD technology developed by laser remote sensing groups at NCAR and MSU

- MP (MicroPulse) class of laser remote sensors that use low-energy "micro" pulses of light at high repetition rates and photon counting receivers
- D (DIAL: Differential Absorption Lidar) class of laser remote sensors that measure the difference in absorption from two nearby frequencies

NCAR

LOTOS

LOTOS

Summary

NCA

- A novel concept for quantifying spatial structure and temporal evolution of the lower troposphere – needed to advance Earth System science
- To be developed, and be evolved, as a tightly integrated observing system
- Integration of sensors for vertical profiling of the lower troposphere with sensors for surface and subsurface characterization and quantification of exchange processes at the lower boundary
- MPD and modular wind profiler will provide the backbone of LOTOS profiling 5 nodes and CentNet of its surface network (up to 100 towers)
- Currently writing MSI proposal to NSF

LOTOS Components

 5 MPDs for water vapor (and future temperature) profiles

NCA

- 5 commercial wind lidars with vertical profiling and scanning capabilities
- 5 radar wind profilers for 3D wind profiles
- 5 AERIs for passive water vapor and temperature profiles
- 5 Ka-band radars for vertical wind profiles and cloud detection

- 5 commercial automated radiosondes for full tropospheric T, H and W profiles
- 5 flux profiling towers for fluxes at heights up to 30 m
- 75 surface flux stations
- 25 greenhouse gas analyzers for flux profiles of CO_2 , CH_4 and H_2O
- 100 GPS receivers for PWV and 3-D tomographic retrievals of water vapor

Quantitative Aerosol via HSRL

Hayman and Spuler, 2017, Optics Express

- Use Potassium D₁ line for offline wavelength
- Distinguishes molecular vs. aerosol backscatter and provides direct retrieval of backscatter optical properties
- Calibrated aerosol backscatter for quantitative comparisons between instruments
- Necessary for model intercomparisons since quantities can be computed (e.g., aerosol size distribution)

Science & Discovery Day

MPD Network Demonstration

- 8 radiosondes/day from CF
- Raman lidar (WV and temp) at CF
- Collocated with AERIs, MWRPs and Doppler lidars
- Collocated with three GPS
 receivers

- MPD Network demonstration at DOE/ARM/SGP sites
- 22 April 19 July 2019
- Collaboration with Dave Turner
 (NOAA)

