

Approche physique de la représentation des erreurs modèle en prévision d'ensemble : application à la convection peu profonde

Axelle Fleury, François Bouttier, Fleur Couvreux DR/CNRM/GMME

Ateliers de Modélisations de l'Atmosphère – 8-12 mars 2021

Introduction : la prévision d'ensemble

Prévision d'ensemble : combiner différentes prévisions pour représenter l'incertitude inhérente aux modèles météorologiques.

Sources d'incertitudes : conditions initiales, conditions aux limites et "erreurs modèles"

Prévision d'ensemble Arome (PE AROME) :

• 16 membres, résolution horizontale 2.5 km, 90 niveaux verticaux

discrétisation approximations

processus sous-maille, ...

- schéma assimilation 3D-Var
- couplage avec des membres de la PEARP
- perturbation de paramètres du schéma de surface
- perturbation de la physique avec la méthode **SPPT**

Représentation des erreurs modèle dans la PE AROME

Stochastic Perturbations of Physics Tendencies (Buizza et al. 1999, Palmer et al. 2009, Bouttier et al. 2012)

A : partie adiabatique, P_i : paramétrisation physique, r : variable aléatoire, α : paramètre dépendant de l'altitude

Limites :

- erreurs des schémas supposées parfaitement corrélées
- pas de perturbation lorsque la somme des tendances est nulle
- pas de perturbation dans la couche limite
- justification physique limitée

Un bruit multiplicatif ne suffit pas pour représenter toutes les erreurs modèle (Christensen 2020) Sous-dispersion de la PE AROME Explorer d'autres façons de représenter les erreurs modèle, en ciblant davantage les processus physiques à l'origine de l'incertitude.

Différentes approches existent déjà :

- SPP (perturbation de paramètres)
- « physically-based scheme », « process-oriented scheme » : reformulation statistique de certains schémas

Objectif:

- → Tester de tels schémas de perturbation dans AROME
- Comparer leurs résultats avec ceux de SPPT

Test dans un cadre simplifié : version uni-colonne d'AROME, simulations de cas idéalisés

Reformulation stochastique des schémas : cas de la convection

Génération d'une population

maille pour déterminer un flux de

Concept de fluctuations autour de l'équilibre (Craig and Cohen 2006, Plant and Craig 2008)

Flux de masse moyen à grande échelle

Différents états sousmaille possibles

Adapté de G. Craig – DWD stochastic workshop

Plant and Craig 2008

Adapté par Sakradzija et al. (2015), Hirt et al. (2019) à la convection peu profonde :

Champ résolu movenné sur plusieurs cellules adjacentes : => flux de masse

déterministe

Génération d'une population de nuages, chacun ayant un flux de masse et une durée de vie

masse total.

0

But : tester une méthode de perturbation stochastique de la convection simplifiée (pas de génération de population de nuages)

Principe : **perturber la condition de fermeture en flux de masse** du schéma de convection peu profonde dans Arome

Pergaud et al. 2009

Schéma de Pergaud et al. (2009) dans Arome :

fermeture du flux de masse à la surface

 \neq Plant and Craig, Sakradzija et al.

=> estimation de la distribution du flux de masse en surface à l'aide de LES

Cas d'étude

ARMCu (Brown et al. 2002)

Développement de petit cumulus sur une surface continentale en journée

Simulations LES :

- Méso-NH version 5.4 (Lac et al. 2018)
- domaine $6.4 \times 6.4 \times 4 \text{ km}^3$, $\Delta x = \Delta z = 25 \text{ m}$
- sorties toutes les 5 minutes

FIRE (Duynkerke et al. 2004)

Stratocumulus sur océan

Simulations LES :

- Méso-NH version 5.4 (Lac et al. 2018)
- domaine 25.6 x 25.6 x 1.2 km³, $\Delta x = 50m$, $\Delta z = 10m$
- sorties ≈ toutes les 3 heures

Méthode

Identification des updrafts : méthode fondée sur l'émission d'un traceur passif (Couvreux et al. 2010, Brient et al. 2019), utilisation du code développé par N. Villefranque.

- Approximation du flux de masse des updrafts : 2000 (updraft fractional area) x (updraft mean w)
- **B** Coarse-graining :

Coupe verticale de l'anomalie de concentration en traceur et updrafts identifiés pour ARMCu et FIRE

- Domaine découpé en carrés de 1.3 km² pouvant se chevaucher
- Calcul du flux de masse total sur chaque carré

Résultat : distribution du flux de masse

ARMCu (5–10 hr)

FIRE (12–16 hr)

FIRE (20–24 hr)

Ensembles de simulations 1D

Comparaison de deux ensembles de 100 simulations, produites avec :

• La méthode de perturbation du schéma de convection peu profonde (stoch.conv.) : Le flux de masse est initialisé : $M_u(z_{surf})^{stoch} = M_u(z_{surf}) + \eta$ avec $\eta \sim \mathcal{N}(0, \sigma)$, $\sigma = \sigma_{LES}$

ou

$$M_u(z_{surf})^{stoch} = M_u(z_{surf}) * \eta$$
 avec $\eta \sim \mathcal{N}(1, \sigma)$, $\sigma = \frac{\sigma_{LES}}{\mu_{LES}}$

- La méthode SPPT appliquée seulement à la convection peu profonde (SPPT-conv)
 - Autocorrélation temporelle du bruit = 6h
 - ▷ Ecart-type = 0.42
 - Activé dans la couche limite
 - Le bruit n'est appliqué qu'aux tendances issues du schéma de convection peu profonde

Résultat : dispersion des ensembles

Cas ARMCu

Temps

Altitude

Résultat : dispersion des ensembles

Cas FIRE

Résultat : caractéristiques des updrafts

Dispersion comparable des ensembles produits avec la convection stochastique et SPPT-conv, pour les cas idéalisés étudiés

Généralisation :

- extension à d'autres cas test : distributions similaires ?
- test en 3D

Comparaison à SPPT total :

- implémentation d'autres méthodes de perturbation « physiques » et étude de leurs effets combinés
- complémentarité avec SPP ?

Références

- Buizza, R., Miller, M., & Palmer, T. N. (1999). Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quarterly Journal of the Royal Meteorological Society, 125(560), 2887-2908.
- Palmer, T. N., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., Shutts, G. J., ... & Weisheimer, A. (2009). Stochastic parametrization and model uncertainty.
- Bouttier, F., Vié, B., Nuissier, O., & Raynaud, L. (2012). Impact of stochastic physics in a convection-permitting ensemble. Monthly Weather Review, 140(11), 3706-3721.
- Christensen, H. M. (2020). Constraining stochastic parametrisation schemes using high-resolution simulations. Quarterly Journal of the Royal Meteorological Society, 146(727), 938-962.
- Craig, G. C., & Cohen, B. G. (2006). Fluctuations in an equilibrium convective ensemble. Part I: Theoretical formulation. Journal of the atmospheric sciences, 63(8), 1996-2004.
- Plant, R. S., & Craig, G. C. (2008). A stochastic parameterization for deep convection based on equilibrium statistics. Journal of the Atmospheric Sciences, 65(1), 87-105.
- Sakradzija, M., & Klocke, D. (2018). Physically constrained stochastic shallow convection in realistic kilometer-scale simulations. Journal of Advances in Modeling Earth Systems, 10(11), 2755-2776.
- Hirt, M., Rasp, S., Blahak, U., & Craig, G. C. (2019). Stochastic parameterization of processes leading to convective initiation in kilometer-scale models. Monthly Weather Review, 147(11), 3917-3934.
- Pergaud, J., Masson, V., Malardel, S., & Couvreux, F. (2009). A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-layer meteorology, 132(1), 83-106.
- Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J. C., Khairoutdinov, M., ... & Stevens, B. (2002). Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 128(582), 1075-1093.

METEO FRANCE

Références

- Duynkerke, P. G., de Roode, S. R., van Zanten, M. C., Calvo, J., Cuxart, J., Cheinet, S., ... & Sednev, I. (2004). Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 130(604), 3269-3296.
- Lac, C., Chaboureau, J. P., Masson, V., Pinty, J. P., Tulet, P., Escobar, J., ... & Wautelet, P. (2018). Overview of the Meso-NH model version 5.4 and its applications. Geoscientific Model Development, 11(5), 1929-1969.
- Couvreux, F., Hourdin, F., & Rio, C. (2010). Resolved versus parametrized boundary-layer plumes. Part I: A parametrizationoriented conditional sampling in large-eddy simulations. Boundary-layer meteorology, 134(3), 441-458.
- Brient, F., Couvreux, F., Villefranque, N., Rio, C., & Honnert, R. (2019). Object-Oriented Identification of Coherent Structures in Large Eddy Simulations: Importance of Downdrafts in Stratocumulus. Geophysical Research Letters, 46(5), 2854-2864.