

Influence of ocean salinity stratification on the tropical Atlantic Ocean surface

Accepted in Climate Dynamics

Manon Gévaudan¹, Julien Jouanno¹, Fabien Durand¹, Guillaume Morvan¹, Lionel Renault¹, Guillaume Samson²

¹ LEGOS, Toulouse ; ² Mercator Océan, Toulouse

Scientific context

In the tropical Atlantic ocean:

Presence of warm waters inducing :

- Development of deep-convection
- High precipitation under the Inter-Tropical Convergence Zone (ITCZ)

Important freshwater supply from river runoff and precipitation (ITCZ)

Strong salinity stratification

Scientific context Sea Surface Salinity (SSS)

Several studies suggest that salinity impacts the Atlantic climate:

- Thinning and warming of the mixed layer (Miller 1976; Pailler 1999; Foltz 2009)
- Modulation of the seasonal cycle of SST (Foltz 2009)
- Remote impacts on AMOC and North Atlantic climate (Huang 2010, Jahfer 2017)
- Cyclone intensification (Balaguru 2012a, 2020; Grodsky 2012; Reul 2015; ...)
- Regional sea level (Giffard 2019)

10/03/2021

Tools and method

Development of a coupled ocean-atmosphere configuration :

- Models
 - Ocean: NEMO 4.0
 - Atmosphere: WRF 3.7.1
 - Coupler: OASIS3-MCT 3.0
- Resolution: 1/4° (~27 km)

- Grid: 15°S to 35°N 100°W to 20°E Mercator projection
- Period: 2001-2015 (+ 1 year of coupled spin-up + 30 years of forced ocean spin-up)

Validation

Sea Surface Temperature [°C]

Sea Surface Salinity [PSU]

AMA 2021

0°E

0°E

0°E

4

2

1.5

1.0

1.0

1.5

2.0

0.5

Sensitivity test on salinity stratification

Aim : investigate impact of salinity stratification on the Sea Surface Temperature

- 2 simulations :
- CONTROL run

▶ NOS run :

- removal of salinity dependency in the calculation of Brunt-Väisälä frequency (N²)
- impact on vertical mixing only
- density calculation not affected

Vertical profile of N^2 in Amazon plume

SST sensitivity to salinity stratification

Dots indicate the areas where the difference is significant (Student's t-test with a 99% confidence level)

SST sensitivity to salinity stratification

Several questions arise:

- 1. Positive SST anomaly in summer in the NWTA
- 2. Negative SST anomaly in summer in the CT
- 3. Few SST change in winter

Link between SST and salinity stratification

$$OSS_{100m} = 100 * \frac{\langle N^2 S \rangle_{100m}}{\langle N^2 \rangle_{100m}} \text{ (cf. Maes and O'Kane 2014)} \quad \text{with} \quad \langle \blacksquare \rangle = \frac{1}{h} \int_{-h}^{0} \blacksquare dz$$

N²: Brunt-Väisälä frequency (total stratification)

N^2S : contribution of salinity stratification to total stratification

 OSS_{100m} : contribution of salinity stratification N^2S (averaged over the upper 100 meters) to total

stratification N^2 (also averaged over the upper 100 meters), expressed as a pourcentage of N^2

Link between SST and salinity stratification

▶ The higher the OSS_{100m} the larger the SST anomalies

Mixed Layer heat budget

$$\frac{\partial T}{\partial t} = \left\langle -u \,\partial_x T - v \partial_y T \right\rangle + \left\langle -w \,\partial_z T \right\rangle + \frac{(K_z \partial_z T)_{(z=-h)}}{h} + \left\langle D_l \right\rangle + \frac{Q_s (1 - F_{-h}) + Q_{ns}}{\rho_0 C_p h} + \frac{\partial_t h}{h} (T_{-h} - \overline{T})$$

Sea Surface Temperature [°C] - seasonal cycle

with $\langle \bullet \rangle = \frac{1}{h} \int_{-h}^{0} \bullet dz$

Mean from April to June (growing SST difference)

Mixed Layer heat budget

Atmospheric response

Atmospheric response

Summary scheme of ocean-atmosphere feedback

Summary

Amplification of SST seasonal cycle due to salinity stratification :

- +0.2 to +0.5°C in summer in the NWTA
- -0.2 to -0.5°C in summer in the CT

Little change in winter

- Decrease of cooling due to vertical mixing, damped by a decrease of warming due to atmospheric fluxes and entrainment
- Negative feedback from the atmosphere : SST increase leads to a decrease in latent heat flux and shortwave radiation, limiting the surface warming

Supplementary material

Tools and method

Development of a coupled ocean-atmosphere configuration :

WRF:

- 40 vertical levels (σ coordinates)
- Top of the atmosphere : 50 hPa
- Forcing : ERA-Interim (6-hourly), albedo: MODIS (monthly)

NEMO:

- 75 vertical levels (z coordinates)
- Forcing : MERCATOR GLORYS2V4 (daily), runoff: ISBA-CTRIP (daily)

OASIS:

- fields exchanged every hour
- WRF to NEMO : surface winds, heat and water fluxes
- ▶ NEMO to WRF : surface currents, SST

HPC:

- Irene (CEA) 48 CPUs/node
- ▶ 288 CPUs : WRF \rightarrow 270 + NEMO \rightarrow 12 + XIOS \rightarrow 6
- 1 month simulated in 1 hour

Development of the coupled configuration

<u>NEMO:</u> already used in several publications (Jouanno et al., 2017; Hernandez et al., 2016, 2017; Giffard et al., 2019)

WRF: need for sensitivity tests

4 parameters tested:

- Convection
- Longwave radiation
- Shortwave radiation
- Planetary Boundary Layer

Parameters not tested: (Meynadier et al., 2015)

- Microphysics (WSM6)
- Land Surface (Noah Land Surface Model)
- Surface Layer (MM5)

Choice : parameters giving the best heat fluxes and including a feedback of clouds on the radiative schemes

WRF Sensitivity tests

South-North sections mean between 40°W and 20°W

Sea Surface Temperature - annual [°C] 29 120 — AVHRR — OAFLUX Run 1 – Run 1 100 28 – Run 2 -- Run 2 Run 3 Run 3 --- Run 4 -- Run 4 80 27 Run 5 Run 5 26 60 25 40 24 20 23 0 22↓ 10°S -20↓ 10°S 10[°]N 20°N 30°N 10°N 20°N 0° 0° Sea Surface Salinity - annual Precipitation - annual [mm/day] 38.0 - SMAP TRMM 12 Run 1 Run 1 37.5 --- Run 2 -- Run 2 Run 3 Run 3 10 --- Run 4 Run 4 37.0 Run 5 Run 5 8 36.5 6 36.0 4 35.5 35.0 ↓ 10°S 10°N 20°N 10°S 0° 10[°]N 20[°]N 0° 30°N

Net Heat Flux - annual [W/m²]

30°N

30[°]N

Mixed Layer Depth [m]

Validation

20°C isotherm depth [m]

AMA 2021

Seasonal cycle of SST

Change in entrainment in the NWTA (MLD heat budget)

• Entrainment =
$$\frac{\partial_t h}{h} (T_{-h} - \overline{T})$$

10/03/2021

Change in entrainment in the NWTA (MLD heat budget)

- Null during ML deepening events: $(T_{-h} - \overline{T}) = 0$
- Entrainment controlled by restratification events, and especially diurnal cycle
- MLD diurnal cycle, and therefore entrainment: low in CONTROL and high in NOS

24

AMA 2021