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1- A machine learning assisted stochastic cloud population model as a parameterization of
cumulus convection
Samson Hagos, Jingyi Chen, Katelyn Barber, Koichi Sakaguchui, Zhe Feng, Heng Xiao, Robert S. Plant

A machine learning assisted cloud population model is coupled with the Advanced Research
Weather Research and Forecasting (WRF) to represent fluctuations in cloud base mass flux
associated with the life cycles of cumulus convection cells. In this model, the size distribution and
associated cloud base mass flux of the convective cells are related to their previous state and the
change in the convective area via a transition function. The convective area tendency in turn is
assumed to depend on cloud base mass flux resolved by the host model (WRF). The transition
function is represented by a neural network trained by a 1 km grid spacing WRF simulation. The
cloud population model continuously predicts the cell size and cloud base mass flux distributions
which are then fed to an entraining plume model. It is shown that such an approach to
parameterization can lead to realistic precipitation statistics and diurnal cycle over various regions
as well as MJO related propagation of precipitation.

Question 1 <Doris Folini>: (WE CAN KEEP THE QUESTION IN THE DOC, I MAY HAVE MISSED IT IN
THE TALK) Could you use observations instead of / in addition to a high resolution model to train
for / learn about f(c) ?
<Samson Hagos> Yes it can be done to a degree. For example in this work we use observation only.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001798 But one needs mass flux
to do the kind of parameterization  that we are building which we have no observation for.

Question 2 <Frédéric Hourdin>: (WE CAN KEEP MY QUESTION IN THE DOC) Do you have
constraints on your f0 f1, b0 b1 ? Are your running a mass flux model at the end ? I may have
missed the equations
<Samson Hagos> Yes the machine learning model only predicts the pdf of mass flux. A random
sub-set of the pdf is then fed to a cloud model. Frédéric : And so do you have some constraints
that you should guarantee on those variables ?
Question 3 -  Fabian Senf <senf@tropos.de>: How do you define "cells" and "cell area"? I guess this
involves segmentation of a field which can have various sensitivities. And as follow-up: You
mentioned cell interactions: Do you have a measure how cells interact with each other?
<Samson Hagos>In this earlier work we use the machine learning model offline to examine
interactions. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001798

Question 4 - Hannah Christensen: To what extent are the improvements you see (e.g. MJO) due to
the stochastic model in general versus the ML learned transition function
<Samson Hagos> We have not thought about that for we have not untangled the stochasticity from
the machine learning based pdf from which we are sampling.
Question 5 - Catherine Rio: does that mean that once you have the cloud-base mass-flux right,
your scheme is doing everything else quite ok (mixing, precip, …)?

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001798
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001798


<Samson Hagos>  The cloud model is fairly standard and seems to work OK. In addition to cloud
base mass flux, the cloud model is fed cell sizes which affect entrainment. We were careful to make
sure we use a run-of-the mill mass flux model to isolate the impact of the cloud population model.



2-Development of a physically-based parameterization of the raindrop formation processes
through machine-learning
Azusa Takeishi, Chien Wang

While quick transformations of cloud droplets into raindrops are frequently observed, reproducing
such fast conversions in atmospheric models has been one of the major challenges. Recently some
studies showed the importance of turbulence in expediting the cloud-droplets-to-raindrop process.
In addition, it has long been argued that aerosol size distributions and chemical compositions may
be critical to the collision-coalescence process. In this study, we utilize a parcel model that
calculates the processes of aerosol activation, condensational growth, and collision-coalescence,
all based on physical equations. We apply machine-learning algorithms to model-simulated
raindrop mass alongside ten dynamical and microphysical variables as input features. Differences
between the machine-learned results and those predicted by empirical parameterizations, as well
as the applicability of the machine-learning-based parameterization in a regional model, will be
discussed.
Question 1 <Fleur Couvreux>: I may have misunderstood but you mention Sulfates and sea
particles Is your parcel model also suitable for other types of aerosols?
Answer by Azusa Takeishi: Yes, certainly. The initial size distributions of aerosols can be specified
by users, with any hygroscopicity values & size distribution parameters, for how many aerosol
species/populations one would like. But for my machine-learning procedure, I used sulfate & sea
salt populations. Their size distributions vary (selected by Latin-hypercube sampling) within a
defined range; their number concentrations vary too, so there are some simulations with very few
sea salt (or sulfate particles) as well.
Question 2 <Frédéric Hourdin>: Is it not a case where we could be afraid of not having a physical
relationship between inputs  and dQr/dt ? with the risk of being completely wrong outside the
learning domain ? When scanning climate conditions from equator to pole and from surface to
stratosphere ? Welcome :)
Answer by Azusa Takeishi: The inputs (or features) are 53 variables, including T, P, S, w, eddies,
droplet/rain size distributions (separated into tens of bins each). Even if there is no physical
connection between some of the 53 variables and dQr/dt, the machine will be able to learn that;
at the end we are able to know which input variables are most important by ranking the
“importances”. So, having some variables that are not connected to dQr/dt (or ones with the least
importances) as input features is not a problem (we can eliminate those “extra” inputs to increase
the machine-learning efficiency at the end). If we feed the machine with a set of input features
that are outside of the learning range, then the machine would not be able to make a good
prediction - in order to minimize this possibility, we train the machine with more than a million
samples.
Question 3 <Danny Williamson>: Why Random Forrest? Do you think anything is lost by not
having predictions with uncertainty? And finally, how accurate would prediction have to be to
replace a physical parameterisation (you have 0.66 accuracy right now, how high does it need to
be)? I guess that was 3 questions :)
Answer by Azusa Takeishi: We’re currently using the ensemble learning methods (Random Forest
& Gradient Boosting) because some tests with the Multi-Layer Perceptron & the Support Vector
regressors did not work well (haven’t explored other methods yet). I’m not entirely sure if I know
enough about making predictions with uncertainty, but I will look into it right away! Today I didn’t
talk about the scores/accuracy because there may have been some errors in the calculation of the
scores and the actual scores might be much higher than 0.66 (cannot check it now because the
supercomputer is on maintenance). I think scores higher than 0.85 would be “good enough” but



this is just an arbitrary number in my mind at the moment. I should see other machine-learning
studies for reference.
Follow up (DW): Also see statistical models :). Random Forest is attractive because it can be quite
accurate for low effort, but perhaps you might look to moving to a deep NN or similar, particularly
if you can run on the supercomputer… :)
Question 4 <Axel Seifert>: Have you tried solving the resulting ODEs? Estimating the process rate
(autoconversion) is only the first step. Solving the ODEs can reveal problems that you may not have
seen in the process rates (https://doi.org/10.1029/2020MS002301).
Answer by Azusa Takeishi: Yes, ODEs are solved in the Pyrcel model. But thank you for the
reference - I’ll read it right away and add more answers asap.
Question 5 <Maxime Colin>: Thanks for the talk. Why comparing your tests with the Kessler
scheme only?
Answer by Azusa Takeishi: I’ll be comparing my results with a few more parameterizations other
than the Kessler scheme too, very soon. The Kessler scheme was plotted out because that was the
simplest & just for a reference.

3 - Assessing calibration issues and intrinsic limits of a convection parameterization using
machine learning
Romain Roehrig1, Daniel Williamson2,3, Fleur Couvreux1, Frederic Hourdin4

https://doi.org/10.1029/2020MS002301


Over the past ten years, the CNRM climate model development team has developed and
implemented a convective scheme that aims at representing dry, shallow and deep convection in a
unified and continuous way. During its integration, the question of its effective ability to capture
the various convective regimes arose. The present work investigates this latter question in a
rigorous manner: does a set of tuning parameters exist for this parameterization? Or are we facing
its intrinsic limits? This investigation is made possible thanks to (i) the recent availability in our
SCM of a wide range of single-column model convective cases, each of them being associated with
relevant references (the new input standards for SCM forcing shared within the French community
were instrumental for this achievement), and (ii) the development of machine-learning tools that
provide an objective framework for process-based model tuning, and which ultimately illuminate
the issue of parameterization tuning.

Question 1 <F. cheruy>: Would it be interesting to redo ARM cu case with interactive radiation and
coupling with surface (including a LES reference)?
Answer (F Couvreux): There is for example the new “ARM” case proposed by Y Zhang et al (2017)
that can include interactive surface and radiation and that has been built on a composite of
15-year of observations. This case should soon be in the DEPHY format.
Further answer (Romain): Yes, especially since the work of N. Villefranque within the HighTune
project now provides relevant reference for radiative metrics. For coupling with the surface, yes
also, but it is needed to get forcing parameters for the surface. Probably in an idealized framework,
with consistent LES.

Question 2 <Doris Folini>:Several questions, feel free to reply only in the google doc. How do you
choose your 24 parameters? Expert knowledge or all parameters that are there? How important is
this choice? Can you tell a posterior that 10 parameters would have been sufficient? And use this
info in the future?
Answer (DW). The question is, are the 10 parameters always the most important? It can be that 10
parameters are crucial over the initially explored ranges, but that as you reduce the space with
history matching, you zoom into a region where new parameters are dominant. If you never varied
the other parameters, you don’t see this.The approach treats the parameters that are “inactive” as
noise in the emulators, until such time as they are activated (if they ever are).
Further answer (Romain): To say it another way, the dominant parameters that explain the
sensitivity of the SCM may evolve across the waves, and one parameter may be rapidly “fixed”
within a small range. It is hard to know from the start I think, and at least the framework provides a
rigorous way to confirm our initial intuitions (or not).

Question 3 <Chris Holloway>: How do you know that your “best” choice of parameters doesn’t
have a “cancellation of errors” problem?  Or is there another approach used to try to determine
which parameterisations and parameter values are most physically relevant on their own before
being tested in combination with the other parameterisations and parameter choices?  OK thanks!
Answer (Romain): I agree that there may be some compensations between two
parameterisations. An example as I mentioned is between the turbulence and mass-flux
parameterisations. One way is to add metrics that may help disentangle such balance, but only if
we have “good” reference for that, with small uncertainty (otherwise, it won’t constrain anything).
Another way is to consider cases which involve only one parameterisation (e. g., our work in
Audouin et al. 2021 JAMES, where we could only consider the turbulence parameterisation). But
not sure if it is always possible, especially because, for some regimes,  the interactions between
parameterisations is often as important as the parameterisations themselves. Besides, my “best”



choice was only for illustration. Ideally, all “best” choices should be considered, and at least their
diversity should be documented (and this can help to find new metrics that we may be able to
further constrain, if relevant).

Question 4 <Maxime Colin>: Very interesting presentation! Are you able to understand in which
cases the 1D and 3D biases are the same, and in which cases they are different?
Answer (Romain): Thanks Maxime. For several 3D systematic errors, we find them in relevant 1D
cases, especially for boundary layers, low clouds. It’s also the case for the diurnal cycle of deep
convection. For deep convection regimes, it’s a bit more difficult, probably because the interaction
with the large-scale dynamics is also key (WTG/DGW may be an interesting alternative to further
use, with however the question of relevant references). For the CINDY2011/DYNAMO case, we
found large similarities with the 3D model in the Indian Ocean for the temperature and specific
profiles. Besides, even though the biases are different between 1D and 3D, from my experience,
we often see similar sensitivity to parameterisation parameters. But it’s harder to use that in a
tuning framework, which involves a priori many parameters...



4--A network approach to the geometric structure of shallow cloud fields
Franziska Glassmeier1, Graham Feingold2

The representation of shallow clouds and their radiative impact is one of the largest challenges for
global climate models. While the bulk properties of cloud fields, including effects of organization,
are a very active area of research, the potential of the geometric arrangement of cloud fields for
the development of new parameterizations has hardly been explored. Self-organized patterns are
particularly evident in the cellular structure of Stratocumulus (Sc) clouds so readily visible in
satellite imagery. Inspired by similar patterns in biology and physics, we approach pattern
formation in Sc fields from the perspective of natural cellular networks. As an outlook, we discuss
how a similar network approach can be applied to describe and quantify the geometric structure
of shallow cumulus cloud fields.

*Talk has been withdrawn



5-Machine-learned atmospheric optical properties for radiative transfer computations
Menno Veerman1, Robert Pincus2,3, Caspar van Leeuwen4, Damian Podareanu4, Robin Stoffer1, Chiel van
Heerwaarden1

A fast and accurate treatment of radiation is essential for high quality atmospheric simulations, but
radiative transfer solvers are computationally very expensive. In this study, we use machine
learning to determine the optical properties of the atmosphere, which control the absorption,
scattering and emission of radiation. We train multiple neural networks to predict all optical
properties calculated by the RRTM for General circulation model applications - Parallel (RRTMGP)
from the pressure, temperature, water vapour content and ozone mixing ratio of each grid cell.
The predicted optical properties are highly accurate and resulting downward longwave and
shortwave radiative fluxes have errors within 0.5 W/m2 at the surface. Depending on the size of
the neural networks, our implementation is up to 4 times faster than RRTMGP. We thus conclude
that neural networks are very suitable to emulate the calculation of optical properties.

Question 1 <Axel Seifert>: Usually the split is in training data, validation data and testing data. I did
not see a validation set being used. Also the training plot (score  as function of EPOCHs) showed
only one line, but should show 2 lines for training and validation set. In addition, having a small
testing set (only 5 %) can be misleading if those 5 % are drawn from an easier part of the phase
space.
Ok, thanks, this is confusing, but now it makes sense. Thanks for clarifying. Nevertheless, you
should show both lines in the EPOCH time series. The 5 % is maybe fine, if your training set is very
large compared to the number of trainable parameters (which is probably the case for your small
ANNs). Nevertheless, using an easy validation or testing set, can be a problem.
Reply <Menno Veerman>: I see that it is somewhat confusing. Generally, I did not see striking
differences between the training and evaluation loss (hence why I decided to only show the
evaluation loss to reduce the number of lines in the plot).
Axel: That training and validation loss collapse onto a single line is good and something worth
mentioning.

Question 2 <Sophia Schäfer>: Did you look into how errors depend on region, cloud type,
meteorological situation,...? Thanks, I missed that it was clear-sky only. Do you plan to also look at
cloudy situations? I focussed on the gaseous optical properties because they are much more
expensive to compute than the cloud optical properties, I expect much less of a speed-up for the
cloud optical properties. Therefore, I was not directly planning to look into the cloud optics as well,
but a full optical properties emulator might be a nice followup indeed.

Question 3 <Doris Folini>: Once you have run your algorithm, can you tell which g-points are more

relevant for / contribute more to the error? If so, could such information improve our overall

understanding of what matters more / most to get things right? What gaseous species, for

example, matter more / most where on the planet or during what time of the day / year?

Answer: Although I mainly focussed on the broadband fluxes, I have looked at the fluxes per band
(RRTMGP has 14 SW bands of 16 g-points and 16 LW bands of 16 g-points). Mean absolute errors
per band are generally between 10^-3 and 10^-1 W/m2, but up to 0.2 W/m2 for the smaller
networks I tested. I have not really looked at the errors of the separate g-points. I don’t think you
can learn from this approach which gaseous species are most important where and when, merely
which g-points respond more/less linearly to changes in gas concentrations, and are thus
easier/harder to predict with a neural network approach



Question 4 (Maxime Colin): Why did you decide to use neural networks only to model the
relationship between atmospheric properties and optical properties, and not for the second step
to compute radiative fluxes? Is it just because this is where more improvement was needed?



6-Parameterization and tuning of cloud and precipitation overlap in LMDz

L Touze-Peiffer, F Hourdin, C Rio

We will present the effect of a new parameterization, inspired by Jakob & Klein (2000), to take into

account cloud overlap in the formation and evaporation of precipitation in the atmospheric model

LMDz. In this parameterization, at each level,  the precipitation flux is divided into clear-sky and

cloudy precipitation fluxes, with corresponding precipitation fractions. Newly formed precipitation

falls within the clouds, thereby increasing the cloudy precipitation flux. By definition, the cloudy

precipitation falls in saturated air, so only the clear-sky precipitation flux evaporates. This simple

treatment corrects some inconsistencies found in the standard version of LMDz and leads to a

better representation of cloud and precipitation overlap.

The version of LMDz containing this new parameterization is tested and tuned using the HighTune

tools over various 1D case studies and in 3D simulations. The results illustrate the potential of

machine learning techniques to guide the development of new parameterizations.

Question 1 <Fleur Couvreux>:Which metrics did you use for the tuning? was surface rain used?
So surface rainfall not used.

Answer: Indeed, we used the same metrics as in Hourdin et al. (2020), so no metrics on surface
rainfall. Nevertheless, I investigated quite systematically the best simulations of the standard
version of LMDz obtained after tuning, and no simulations predicted realistic rain rates in ARMCU,
RICO and SANDU. While not a proof, it suggests that the tuning of realistic model clouds in the
standard version of LMDz is not compatible with realistic surface rain rates (contrary to the new
version). To prove it rigorously, I should indeed use metrics of surface rain rate in addition with the
metrics already used.

Question 2 <Etienne Vignon>:Is your last conclusion about Kuhn’ concept application not related to
the fact that a model is not reality (by definition)? I mean, a model cannot be exhaustive in terms
of process representation.

Answer: A model is indeed not the reality and cannot be exhaustive in terms of process
representation, but a climate model attempts to predict accurately certain aspects of the reality.
We could make a distinction between intermediate variables, that are used in parameterizations
but should not be predicted as accurately as possible (ex: mass flux in convection schemes), and
target variables of the model, which the model should get right (ex: cloud fractions). When
analyzing model results, we only look at model target variables. The difficulty consists in finding an
appropriate balance between the realism of the different target variables of the model.

Question 3<Daniel Williamson>: It is clear, whatever we get right in 3D, we do so for the wrong
reasons. So if progress is degraded, but for good reasons, is that necessarily bad? Follow up: So can
we use bad (by which I mean right for the wrong reasons) models to predict climate change?
(Conceptually. Of course, I understand we must do something)



Answer (Ludo): Good question! The answer depends on what we call ``for the wrong reasons” I
guess. The errors on intermediate variables seem to me completely acceptable (see above). The
errors on target variables of the model are more questionable. However, I would say that for the
prediction of climate, there is a hierarchy of target variables: if we do not want to get a totally
unrealistic climate, some global properties must be guaranteed, for instance to get a correct
radiative balance at the top of the atmosphere (see Hourdin et al. 2017). We might accept some
errors in other target variables in order to get these more important target variables right.

DW Follow up again… Top of the atmosphere radiative balance is an interesting example. Typically
we don’t get it “right” but we get it “right for the coupled model” in order to get reasonable 20th
century warming. This usually means the TOA we tune to is not the observed. Whether we view
this necessary step as a result of accumulation of errors in the processes, or something else, it is
interesting to note that what we accept to be “right” and what we accept to be “good reasons” or
“acceptable compromises” are largely a result of the history of development for that model and for
the community in general.

(Ludo) I fully agree… For me, one potential of High-Tune explorer is to make these different
choices previously hidden in the development of models explicit at the level of the scientific
community and thus opens a debate on what is “acceptable” or not, what we accept to be “good
reasons” and which tuning targets are the most relevant.

Let’s note also that at the end there is an operational need to make models work, that is to
produce realistic results… even if the method used to make it work is not fully justified.

Question 4 (Danahé Paquin-Ricard): Can you learn from the tuning parameters proposed by
High-tune about the interactions between the parameterization? What’s the physical meaning of
the proposed tuning? Is it possible to gain some insight on the model with this methodology?

Answer (Ludo): from my (limited) experience, definitely. Using the High-Tune explorer is actually
much more efficient to explore the interactions between the parameterizations. Without it, there
is a risk of being blocked in a local optimum in the region of parameters. On the contrary, as
High-Tune explores a much larger sample of parameter space, it helps to understand what a
climate model can and cannot do. Expert judgment is still crucial to analyze the results of
simulations and understand the structural limitations of a climate model, but High-Tune guides this
expert judgment rather than replace it.

Question 5 (Maxime Colin): Great talk, Ludo! With your cloud evaporation change, what was
improved and what was degraded (after  re-tuning)? Do you have ideas to address the different
points that were degraded (if that’s relevant)?

Answer (Ludo): Thanks a lot Maxime. The answer was in the slides that I did not have time to show.
It seems that it is possible to have a shortwave cloud radiative effect at the top of the atmosphere
better than the one given by the standard version of LMDz. Nevertheless, whereas we expected
also significant improvements in terms of surface precipitation, the results were more
disappointing. The results were, at best, of similar quality to those given by the standard version of



LMDz, and in the Tropics, they seemed to be slightly degraded. The analysis of results for other
metrics is still ongoing.

7-Characterising Convection Schemes Using Their Linearised Responses to Convective Tendency
Perturbations
Yi-Ling Hwong1, Siwon Song1, Steven Sherwood1, Alison Stirling2, Catherine Rio3, Romain
Roehrig3, Chimene Daleu4, Robert Plant4, David Fuchs1, Penelope Maher5, Ludovic Touzé-Peiffer6
We study the behaviour of convection schemes by probing their responses to small perturbations
in temperature and moisture tendencies following the linear response function method of Kuang
(2010). We compare 12 physical packages in 5 atmospheric models using single-column model
(SCM) simulations under RCE conditions. Results are also compared to that of a cloud-resolving
model (CRM). We show that the procedure is able to isolate the behaviour of a convection scheme
from other physics schemes. We identify similarities but also substantial differences among the
SCMs and between the SCMs and the CRM, some of which can be explained by scheme physics. All
SCMs display kinks in their responses, which are absent from the CRM, suggesting that they might
be related to switches or thresholds embedded in convective parameterisation. The models’
moisture responses are related to their RCE profile, while their temperature responses do not and
therefore can be regarded as independent diagnostics.

Question 1 <name>:
Question 2 <name>:

Q3 <Maxime Colin>: Why does the CNRM scheme behave similarly to adjustment schemes?
<Answer YLH> We are not really sure, perhaps Romain or someone from the PCMT team can
provide a hypothesis. One thing that sets the PCMT scheme apart from the other mass flux
schemes in this study is its consistent use of buoyancy as the forcing term in its formulation
(triggering, entrainment/detrainment, mass flux calculation etc), and it could be that this
“consistency” improved the responsiveness of the scheme to local perturbations
<Romain> I don’t have much intuition on that yet… But this is clearly something that we need to
investigate.

Q4 <Roel Neggers> Really interesting results! I was wondering if the same signatures of the
convection schemes are visible in GCM output.. so not in SCMs, which of course are a bit
constrained in how parameterized convection can respond to a perturbation. Did you look into
this? We studied this for marine low level clouds for a different intercomparison study:
https://doi.org/10.1002/2015MS000503

<Answer YLH> Thanks! That’s a good question. We have not directly looked into if these signatures
are also visible in GCM output. In fact - our results seem to have illuminated areas that were NOT
visible in 3D simulations, e.g. the flaw in LMDZ6A (overestimation of evaporation in shallow cloud
layer) was not previously identified in 3D studies. And I think there are a few studies that showed
that the Kain Fritsch and BMJ schemes produce similar results for extreme rainfalls, but in our
experiments their responses are vastly different. So in summary, I don’t know, but I suspect the LRF
method probably highlights signatures that are not obvious in GCM outputs, hence provides a

https://doi.org/10.1002/2015MS000503


complementary view/method to evaluate convective parameterisation. Thanks for the paper! I
think I have actually read your paper, just need to recall (and reread) now to see what you found :-)

8- Sensitivity of observable output of modeled microphysics to stochastically perturbed
parameters

Tomislava Vukicevic1, Derek Posselt2, Aleksa Stankovic1

This study investigates sensitivity of cloud and precipitation parameterized microphysics to

stochastic representation of parameter uncertainty to evaluate a potential to use satellite remote

sensing to estimate properties of such uncertainty representation for the purpose of ensemble

modeling. A stochastically perturbed parameterization scheme (SPP) is applied to multiple

microphysical parameters within a lagrangian column model. The experiments based on ensemble

simulations indicate a high sensitivity of simulated microphysics-sensitive satellite observables to

the SPP properties. The analyses suggest a strong potential to use the satellite observations to

estimate the modeled stochastic uncertainty of the parameterizations. Further analyses will be

presented at the conference.

Question 1 <name>:
Question 2 <name>:



9-A Hybrid Deep Learning CNN-LSTM Model for Predicting Monthly Rainfall Over Japan
Paul Adigun

Predicting rainfall is an important task due to the high reliance on it, especially in the agriculture

sector. Prediction is difficult and even more complex due to the dynamic nature of rainfall. In this

study, we carry out monthly rainfall prediction over some selected locations in Japan. The rainfall

data were obtained from the Japan Meteorology Agency (JMA). We study the predictive capability

of a hybrid Convolution Neural Network (CNN) integrated with Long Short Term Memory (LSTM)

model on the parameters recorded by the automatic weather station in the selected regions. The

developed hybrid model is applied to four different locations in different climatic regimes in terms

of monthly precipitation characteristics. Overall, this study was able to establish the skill

performance of hybrid CNN-LSTM model in capturing complex relationship between the causal

variables and monthly variation of rainfall in the study region.

*Talk has been withdrawn



10-Tropical free-tropospheric humidity differences in global storm-resolving models
Theresa Lang1, Ann Kristin Naumann2, Bjorn Stevens2, Stefan Alexander Buehler1

Tropical free-tropospheric humidity (FTH) plays a key role in controlling the Earth's outgoing
longwave radiation (OLR), but it is poorly simulated by conventional climate models. We
investigate whether global storm-resolving models (GSRMs) simulate FTH more accurately, by
quantifying inter-model differences in the multi-model ensemble DYAMOND. We find that the
model spread in FTH is approximately halved compared to conventional climate models. However,
the differences still cause a considerable spread of 1.2 Wm2 in tropical mean clear-sky OLR. To
reduce this spread a reduction of humidity biases would be most beneficial in the lower and mid
free troposphere. In the horizontal, FTH biases in two moisture regimes have a particularly strong
impact: Dry subsidence regimes and moist regions adjacent to deep convection. In the most critical
regions FTH biases are related to parameterized processes (e.g. microphysics, turbulence), so a
better understanding of how they affect FTH is needed.

Question 1 <Doris Folini>: Have you also looked whether the larger spread humidity in CMIP5 is
due to “all” models or whether some are decidedly better / worse than others and contribute
more to the spread? As many people (still) work with these models, such info may be of interest to
people.
Answer (Theresa Lang): Overall, I do not think that the larger spread in CMIP5 is only due to a few
single models. But there are a few models that stick out because they do not even reproduce the
typical C-shape of the RH profile. Unfortunately I cannot name these models now, but I can check
and maybe add this information here later.

Question 2 Hannah Christensen: Really interesting work - many thanks! How well sampled is
variability in FTH in the 40-day DYAMOND runs compared to many years of CMIP data? Are the
DYAMOND runs more similar because they don’t have time to sufficiently drift away from the
starting state, or do the common SSTs in both constrain the solutions?
Answer (Theresa Lang): Thanks, these are important questions. To your first question: Of course
the inter comparison is limited somewhat by the shortness of the runs. However, we are confident
that the differences we see are really systematic model biases rather than the result of a poor
sampling of natural variability. We estimated natural variability from several years of ERA5 data
(this provides an upper bound for the variability one could expect in DYAMOND, because of the
varying SSTs). The DYAMOND inter-model spread is significantly larger than the inter-annual
variability in ERA5.  To your second question: I forgot to mention that we only use the last 30 days
of the simulations for the comparison. The first 10 days are excluded to minimise constraints due
to the common initialisation. Of course we cannot rule out that the DYAMOND models are still in
their transition from the initial conditions even after the first 10 days. The model spread does not
systematically increase over the 30 day period we analyse, which makes us confident that the
models are already in their own equilibrium. However, we will not be able to make a final
statement until longer model integrations become possible.

Question 3 by Azusa Takeishi: Thank you for your talk - I don’t know too much about DYAMOND,
but does the better representation of humidity mean the better representations of clouds in
DYAMOND as compared to CMIP5?
Answer (Theresa Lang): This is an interesting question. From what I have seen there are still
substantial differences in cloud properties in DYAMOND, so I would be careful to claim that a
better representation of humidity improves the representation of clouds. Unfortunately I have not

https://www.conftool.com/clouds-in-models2021/index.php?page=adminUsersDetails&path=adminPapersBrowse&form_id=1030
https://www.conftool.com/clouds-in-models2021/index.php?page=adminUsersDetails&path=adminPapersBrowse&form_id=1043


looked at clouds in detail, so I can’t say more about this. But there are people looking at cloud
properties in DYAMOND, e.g. Karol Corko (DLR).



11-Microphysical sensitivities in global storm-resolving simulations (SRMs)
Ann Kristin Naumann

In global SRMs that resolve convection explicitly instead of parameterizing it, microphysical
processes are now fundamentally linked to their controlling factors, i.e., the circulation. While in
conventional climate models the convective parameterization is one of the main sources of
uncertainties (and a popular tuning parameter), this role might be passed on to the microphysical
parameterization in global SRMs. In this study, we use a global SRM with a one-moment
microphysics parameterization and do several sensitivity runs, where in each run we vary one
parameter of the microphysics scheme in its range of uncertainty. First results indicate that
microphysical sensitivities in global SRMs are substantial and resemble inter-model differences
such as in the DYAMOND ensemble. Among the parameters tested, the scheme is particularly
sensitive to the ice fall speed and the width of the raindrop size distribution, which both cause
several 10s W/m2 variation in radiative fluxes.

Question 1 <Frédéric Hourdin>:  a few W/m2 globally means a few K on global mean sruface
temperature in a coupled model. Question  : is the very different cutoff for large IWP important for
cliamte ? Understood ?
<Ann Kristin Naumann>Thinking of Theresa’s clear-sky radiative transfer calculations, I think, it can
be. But this is also a region that is cloudy, so cloud radiative effects might mask radiative effects of
water vapor, at least partly.

Question 2 <Chiel van Heerwaarden>: How big is the uncertainty in ice fall speeds? What is the
way to validate this? Can observations help us or are these too hard to make?
<Ann Kristin Naumann>Ice fall speed is a popular tuning parameter. We increased the fall speed by
about a factor of 3 to the original value of Heymsfield and Donner (1990). I am not familiar with
direct measurements of the ice fall speed but I could imagine some more indirect ways using
observed cloud cover or cloud radiative effects.
Comment on Q2 <Axel Seifert>: As far as I understand, this is bulk fall speed. Hence, it includes a
lot of unknowns like particle size distribution, particle habit, etc. This supports the factor 3
estimate. Fall speed alone would have a smaller but still considerable uncertainty (for a known
particle size and habit).

Question 3 <Tomi Vukicevic> have you considered perturbing multiple parameters? Sensitivity may
change depending on parameter coupling
<Ann Kristin Naumann>I agree. As an example: Because in many ways the “narrower RSD” and the
“higher ice fall speed” simulations show opposite effects, we were interested to see what happens
if we change both parameters in the same simulation. And indeed the two effects do not cancel
but we see, e.g., a substantial decrease in high cloud cover and a higher increase in net TOA fluxes.



12- Impact of middle atmospheric humidity on boundary layer turbulence and clouds
Neelam Namadev Malap1,2, Thara Prabhakaran1, Anandakumar Karipot2

We investigated the moisture present above the boundary layer and its association with the cloud
development and boundary layer(BL) turbulence using Large Eddy Simulation (LES). The dry
boundary layer with shallow clouds observed during Cloud-Aerosol Interaction and Precipitation
Enhancement Experiment (CAIPEEX) over the arid Indian peninsula is studied here. LES derived
fluxes and variances are compared with the constant altitude aircraft observations at different
elevations. LES simulations with the drier conditions above the BL resulted in deeper, warmer and
drier BL with an enhanced boundary layer turbulence. Drying has resulted in energetic BL eddies
and a doubling of moisture exchange coefficients. LES sensitivity indicates that the middle
atmospheric water vapor alone could influence the shallow to deep cumulus cloud transitions in
the monsoon regime in a dramatic way. A 30% drying above the BL could drastically reduce the
liquid water path and cloud albedo by 10-15%

Question 1 <Chris Holloway>: Thanks, interesting talk! Can you explain a little more how you
performed the drying perturbation in the LES sensitivity study? Also, can you please give the
reference for the publication that you mentioned? Thank you.
<neelam> Thank you Chris. We have introduce drying above 1km into water vapor mixing ratio by
subtracting water vapor with 10% of default water vapor, 20% default water vapor and so on.
here is the link for the paper- https://doi.org/10.1016/j.jastp.2021.105553
Question 2 <Fleur Couvreux>:Can you also please detail the rad experiment? that were shown on
the figures?
<neelam>Those are radiation simulations. We just switched on the radiation parameterization i.e.
RRTM for both long wave and short wave into WRF LES.

https://doi.org/10.1016/j.jastp.2021.105553


13-Interpretable Machine Learning and Remote Sensing for Cloud Detection and Classification
Thomas Chen

The detection and classification of atmospheric clouds, in both ground-based and satellite-based
domains, is crucial to the understanding of Earth's energy balance, climate, and weather. Utilizing
the latest deep learning methodologies, we train a convolutional neural network, of the ResNet50
architecture, on cloud imagery data from the ground. Building off of previous work, we explore the
interpretability of models, i.e. how and why the models are coming to their decisions. This requires
ablation studies concerning different input modalities and the fine-tuning of particular features like
the learning rate and loss functions. We also propose the generation of gradient class-activation
maps for the visual representation of the inner workings of our machine learning models. These
figures, which act as saliency maps, allow us to break open any black box models and understand
why they are making their decisions. Interpretability is key to be aware of biases within the
models.

*Talk has been withdrawn



INVITED TALK:
Climate model development and the role of machine learning
D Williamson, Wenzhe Xu, Bertrand Nortier
 Machine learning and AI, thanks to a number of high-profile successes, are often touted as

potentially holding the keys to solutions to some of science’s greatest challenges. Indeed Google’s

DeepMind, having achieved some of the aforementioned successes, turned their attention to

weather and climate prediction. But what is machine learning and can it replace climate modelling

(my view is no)? In this talk I will introduce some key ideas in machine learning, and argue how it

can assist in climate model development, for example through tuning and falsification of

parameterisations.

 In the last half of my talk I will focus on recent innovations with Gaussian processes and their

implications for tuning. In particular I will introduce 2 ideas: Kernel History Matching (KHM) and

Integrating Gaussian Processes (IGPs). KHM is a new tuning method capable of searching

parameter space for climate models with important emergent features without requiring that

these features occur in exactly the same place or at the same times as they do in reference data

sets (knowing that in general they can’t due to limited resolution). IGPs use (deep) Gaussian

processes to couple components of a network (e.g. a climate model). I will demonstrate the

technology and look ahead to its implications for tuning.

Question 2 <Maxime Colin>: What’s your definition of a kernel?
Ans: A kernel is just a function k(x,y): X x Y → R. We typically deal with positive definite kernels.
Kernels are nice because defining a kernel for a space gives an inner product to that space (and
there is an equivalent unique Hilbert space associated with that kernel).

Question 3 <Martin Köhler>: How can a ML technique emulate a on/off process such as saturation
adjustment when the weights are linear? (clouds, convection are all very non-linear)
Thanks, right, it’s the non-linear transfer functions. (MK)

Question 4 <Etienne Vignon>:  Is the orthogonality assumption behind the EOFs somehow limit to
capture complex patterns?
Not at all. The limit is in fact the richness of the ensemble. So there are only n degrees of freedom
in a training set and, if n < N(gridcells) you don’t have a full basis for the whole space. This is true
with the kernel method as well. The question is, how rich is the response to parameter changes. If
it is near chaotic, there is probably no hope, but I don’t think we think that.
Thank you! (EV)

Question 5 < Fleur Couvreux> : what do you need as a training dataset to emulate the different
gaussian processes in your last result which propose several layers of emulators if I understood
correctly?
You need the models that will be coupled.



Question 6 <Tomi Vukicevic> : Given that weather and ES models solve initial and boundary value problem
and solution also depends on a large number of control parameters, all leading to a very large number of
degrees of freedom in AI/ML parameter space, could pre selection be avoided in an objective way usin ML
tools?
I’m not exactly sure what pre-selection is. Is it a formal method?
Pre-selection is referring to the need to reduce the number of control parameters for developing an
emulator.  Are there ML tools to address that? NWP and ES models have of the order of 10**10 controls
including IC and BC
Ah I see. So ML has formal methods for sensitivity analysis etc that picks out active parameters and reduces
the degrees of freedom etc. Whether you would just pass a whole NWP model into a machine learning
algorithm is kind of questionable (I think process-based methods are more stable and break the problem
down somewhat). The basis methods I talked about are what I tend to use. So the fact you have 10**10
controls really means you have a number of spatio-temporal fields. Basis methods project these forcings
onto a basis so that you end up with far fewer controls (the coefficients of basis vectors) and then you can
form the control fields from there. Hopefully this partially answers the question, but happy to take follow
ups by email.

Question 7 <Nicolas Rochetin> : Can we say that ML used to bypass parameterization is just meant to mimic
the flow, when a parameterization tries to represent the flow ? Would this semantic suggestion sound
reasonable ? A representation includes an underlying conceptual picture, which is absent from ML used to
simulate the flow.
DW: I think it’s more than a semantic suggestion and it certainly is reasonable. ML is physics free and hence
constraint free. But if you have a statistical model that represents a flow really well, it would seem like a
great idea to study it to see how it physically handles the representation.

Discussion:



High-Tune:Explorer tutorial

Follow-up session on Friday 10 am at:
https://gather.town/app/dounBToM8YBQ0e5I/labLMDZ

Put your name here if you would be interested in having a late session on Friday
evening French time (normal day time in the West)
-
-
-

Ask your questions or comments here!
-
-
-
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