

Constraining Stochastic Parametrisation Schemes using High-Resolution Model Simulations

Hannah Christensen

hannah.christensen@physics.ox.ac.uk

Atmospheric, Oceanic and Planetary Physics, University of Oxford

Conference on Improvement and Calibration of Clouds in Models, 12 April 2021

Use existing high resolution simulation as 'truth'

Christensen et al, 2018, JAMES. Christensen, 2020, QJRMS

Use existing high resolution simulation as 'truth'

UKMO 4km 'Cascade' simulation

Christensen et al, 2018, JAMES. Christensen, 2020, QJRMS

t

The need for stochastic parametrisations errors in T tendency at 850hPa

→ Characterise random error associated with deterministic prediction

Increasing uncertainty with mean tendency provides support for SPPT approach

Christensen 2020, QJ

Model Uncertainty - MIP

- Joint initiative of WWRP's PDEF and WCRP's WGNE
 - Primary joint interest of the two working groups is model error identification
 - Aim: intercomparison of random error characteristics across models
 - Use Coarse-graining / SCM approach from Christensen 2020
 - Participants from NOAA, NCAR, ECMWF, UK Met Office, Meteo France
- Some key questions:
 - How should we best represent model uncertainty/random error using stochastic approaches?
 - To what extent should this representation be model specific or a fundamental property of atmospheric models?
 - Are current approaches justified? How can they be improved?

Still time to get involved! Email: Hannah.Christensen@physics.ox.ac.uk

Christensen, Dawson and Holloway, 2018, JAMES, 10(8) 1833-1857 Christensen, 2020, QJRMetS, 146(727), 938-962 Coarse-grained Cascade data published on UK CEDA archive NCL coarse graining scripts, and python SCM deployment scripts published on github