Towards operational implementation:

DWD

MODIS Aqua 20130505

A stochastic shallow convection scheme

Maike Ahlgrimm, Alberto de Lozar, Daniel Klocke, Ekaterina Machulskaya, Mirjana Sakradzija, Axel Seifert...

HIGH-TUNE April 2021

atmospheric state no

unique (deterministic)

possible realisations!

longer predicts a

convective state -

there are many

→ Yet this is a fundamental assumption of traditional convection parameterizations

 Convection is not in equilibrium with the large-scale state (closure)

M: mass flux of the ensemble

mi: mass flux of an individual cloud

The stochastic convection scheme adresses this particular limitation of conventional convection parameterizations

The resolved

Predict cloud ensemble properties, stochastically sample ensemble to populate the grid box

DWD

3

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

HIGH-TUNE April 2021

(Craig and Cohen 2006; Plant and Craig 2008; Sadkradzija et al. 2015, 2016; Sakradzija and Hohenegger 2017, Sakradzija and Kbcke 2018)

An approximation with Stochastic Differential Equations (SDE) is available

ICON D2 simulation of a single day 20130505 with shallow convection Diurnal cycle of domain total cloud numbers and mass flux are comparable:

SDE version uses 4 prognostic variables to track state of cloud ensemble, can be saved for restart/cycling Explicit version keeps track of up to 5000 individual clouds per grid cell – easy to extend

5

The scheme still relies on traditional assumptions, does not converge to LES

- Inherits T-B mass flux closure requires limiters and tuning in ICON to achieve acceptable convective activity
- Weak convection in small grid box -> converges to single cloud in grid cell. Yet updraft calculation of T-B assumes a plume representative of cloud ensemble
- → Weaknesses of T-B scheme revealed:
 - on/off behavior in time compensates for poor instantaneous representation of the cloud ensemble

ICON mass flux histogram, 2497m resolution

Cloud base mass flux (kg m-2 s-1)

BOMEX SCM simulations

Extensions: explicit representation of updraft core, detrainement profile, spinup/decay

6

- Approximation using Stochastic Differential Equations (SDE) implemented
 - ➔ use either, or use in piggy-backing mode
- Spinup/decay options
 - → let the cloud ensemble evolve gradually, or spin-up instantly to be in equilibrium with forcing?
- Representation of the updraft core
 - → can we really assume that the updraft fraction is small relative to the grid size, and is it irrelevant for radiation?
- → Lateral entrainment/detrainment profile
 - → derive individual cloud's maximum height and use for construction of detrainment profile representative of the cloud ensemble within the grid box

Averaging CERES FlashFlux over EUREC4A domain

Upwelling SW reduced for stochastic scheme - more in line with CERES obs.

Performance example: EUREC4A

Deutscher Wetterdienst

Averaging CERES FlashFlux over EUREC4A domain

Benefits

- → Scale-adaptive convection parameterization for grayzone resolutions
- Scheme models temporal evolution of convection; cohesive in time, stochastic in space
- > Improved resolved-flow interaction (see M. Sakradzija on Tropical Atlantic case)
- > Potential to produce more realistic, situation dependent spread in ensembles (tbd)
- More computationally efficient SDE version available (though still twice the cost of standard convection)

Challenges

- → Hindcast scores promising, but not (yet) matching performance of parallel routine
 - → alternative to tuning via mass flux limiter is required
 - big bug fix in ICON which has shifted model state significantly, required retuning now mixes shallow/deep parameterizations (interim solution) – need proper shallow scheme to work again
- → Impact of convection scheme on radiation is "filtered" through subgrid diagnostic cloud scheme, and a lot can be "lost in translation" (see M. Köhler on diagnostic cloud scheme)

