A COMPREHENSIVE UPDATE TO THE BOUNDARY LAYER SCHEMES IN HARMONIE-AROME (FOCUSING ON LOW CLOUDS)

Wim de Rooy, Peter Baas, Pier Siebesma, Stephan de Roode, Geert Lenderink, Sander Tijm, et al.

Cloud Scheme

Turbulence Scheme

Integral approach

Convection Scheme

Develop and optimize tightly coupled parametrizations together!

Substantial modifications to all three schemes based on

- process studies: LES, 1D idealized cases
- theoretical: cloud scheme (thermodynamics), turbulence (similarity)
- 3D optimization (uncertain parameters)

Impact of the new configuration

Most important deficiency Harmonie-Arome: Underestimation low cloud cover and overestimation cloud base height (aviation)

- Impact confirmed by several idealized cases and long-term verification of low cloud climatology: From large underestimations to well balanced.
- Preservation of atmospheric inversion strengths is key. Impact on clouds and (heavy) precipitation!

Summary

- Strong feedback between boundary layer schemes demands an integral approach
- Considerable changes to turbulence/convection/cloud scheme based on process studies (LES), theory, and 3D runs.
- Substantial improvement especially on clouds and precipitation. Can be seen for more than a year and almost every day at KNMI (e.g. by forecasters) in a KNMI parallel run.
- Preserving good performance of previous configuration (in particular wind speed).
- With increased insight in underlying physical processes \rightarrow most sensitive SPP EPS parameters.
- All modifications are included in new (default) Harmonie-Arome cy43 and the new Harmonie-Arome Climate model.
- Paper: Model development in practice: A comprehensive update to the boundary layer schemes in *HARMONIE-AROME. de Rooy et al.* (submitted to GMD)