Assessing calibration issues and intrinsic limits of a convection parameterization using machine learning

<u>Romain Roehrig¹</u>, D. Williamson^{2,3}, J. Salter^{2,3}, F. Couvreux¹, F. Hourdin⁴

¹ CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
² Department of Mathematical Sciences, University of Exeter, Exeter, UK
³ The Alan Turing Institute, British Library, London, UK.
⁴ LMD-IPSL, Sorbonne-Universités, CNRS, Paris, France

Context and motivations

New atmospheric physics in CNRM-CM6-1 (Roehrig et al. 2020):

- Calibration over ~4-5 years (back and forth with model developments)
- Calibration "by hand", one or two parameters at the same time, combining 1D and 3D configurations
- New convection parameterization, "unified" (single plume) for both shallow and deep convection
 - > Difficulties to calibrate this physics and make it work for both regimes

Recent developments (High-Tune project):

- Use of statistical (machine learning) tools from the Uncertainty Quantification community
- Rigorously explore the sensitivity of a physics/parameterization to its internal parameters
- Framework to identify which model errors are related to calibration issues and which are structural to the model

The 1D framework:

- Key step in the development of atmospheric parameterizations
- Keep the fundamental processes right, reduce the risks for error compensations
- Comparison to LES/CRM and observations : a wealth for parameterization development/evaluation
- A wide diversity of regimes is needed, and already partly available, with references.
 - > Necessary condition for a parameterization to be validated?

All these provide a rigorous framework to address questions such as:

- For a given model physics, and independently of calibration issues, is parameterization A better than parameterization B?
- Can a unified convection parameterization (such as the one used in CNRM-CM6-1) really capture shallow and deep convection?

Context and motivations

ARM-Cumulus : diurnal cycle of continental cumulus

- Overestimate of cloud fraction
- Cloud base too low
- BL not deep enough, mixing too weak
- Intermittency and numerical issues

Context and motivations

Northern Sounding Array (NSA)

Convection during CINDY2011/DYNAMO

Field campaign in OND 2011, documenting energy and moisture budget over two arrays in the Indian Ocean (Johnson and Ciesielski, 2013)

CM6 Potential temperature bias

Objectives and Framework

Objectives

- Explore the parametric uncertainty of the CNRM-CM6-1 convection parameterization for the ARM-Cumulus (Brown et al. 2002) et CINDY2011/DYNAMO-NSA (Abdel-Lathif et al. 2018) cases
- > Which errors are calibration issues ? Which are structural ?

Framework : Iterative refocusing

(Williamson et al. 2017, Salter et al. 2018, Couvreux et al. 2020, Hourdin et al. 2020)

- Define target metrics f_k and associated references
- Identify relevant parameters λ and their uncertainty ranges (input parameter space Λ)
- Build an experimental design (learning dataset)
- Build emulators $f_k(\lambda)$ for each metrics (Gaussian Processes)
- Identify the subset of Λ which cannot be ruled out yet (NROY space) knowing (*implausibility*):
 - Reference uncertainties,
 - Emulator uncertainties,
 - Some tolerance-to-error quantifying how close to the reference we think our model can/should be.
 - Cutoff T on implausibility to define NROY

$$I_{f}(\boldsymbol{\lambda}) = \frac{|r_{f} - \operatorname{E}[f(\boldsymbol{\lambda})]|}{\sqrt{\sigma_{r,f}^{2} + \sigma_{d,f}^{2} + \operatorname{Var}[f(\boldsymbol{\lambda})]}}.$$
 NROYⁿ = $\bigcap_{k} \operatorname{NROY}_{f_{k}}^{n} = \{\boldsymbol{\lambda} \mid \#\{k \mid I_{f_{k}}^{n}(\boldsymbol{\lambda}) > T\} \leq \boldsymbol{0}\}$

Continue with a 2nd, 3rd, ... wave, as long as we need to improve the emulator forecasts (but only where it is needed), until convergence towards the true NROY is approximately achieved

Metrics, parameters and experimental design

- Metrics (14): temperature, specific humidity and cloud fraction at a few levels (Hour 10)
- **Reference**: LES simulation with Meso-NH, uncertainty from an ensemble of LES simulations

- Parameters (24):
 - 11 related to convective transport (entrainment/detrainment, drag, buoyancy parameter)
 - 2 related with convective closure
 - 1 related to convective cloudiness
 - 6 related with liquid water microphysics
 - 4 related to turbulence
- Wave 1: 200 simulations, sampling based on a Latin hypercube
- Next waves: 200 simulations (within NROY^{W-1})

Wave 1: 200 simulations

Tolerance-to-error

- Potential temperature: 0.5 K except at 3400 m (0.1 K)
- Specific humidity: 0.5 g kg⁻¹
- Cloud fraction: 5 %

Wave 30: 200 simulations

First results

- Several calibrations much better than default.
- Convergence not fully achieved (especially for cf).
- Intrinsic limits of the model physics
 - > Some irregularities in the profile seem intrinsic (in q_v especially)
 - > Cloud base systematically one level too low

Evolution of the Not-Ruled-Out-Yet space

First results

- Decrease of cutoff when emulator uncertainty lower than reference uncertainty/tolerance-to-error
- After 30 waves, NROY ~0.015% of the input parameter space (~150 over 10⁶ simulations)

Dominant parameters

Dominant parameters

- Turbulent mixing (AKN and ALPHAT)
- TKE dissipation (ALD)
- Convective cloud fraction (FNEBC)
- Organized entrainement modulation factor (GCVRE)
- Maximum turbulent entrainment (TENTRX)

Reduced turbulent mixing required: balance between turbulent and massflux mixing ?

High entrainment rates required

An example of calibration within NROY?

Metrics, parameters and experimental design

- Focus on the first MJO event (15 October to 4 November 2011)
- Consider temperature and specific humidity average profiles
- Metrics:
 - 3 levels for 0: 925, 600 and 200 hPa
 - 2 for q_v: 925 and 700 hPa
- **Reference:** field campaign observations (radiosounding array),

temperature uncertainty ~0.1 K; tolerance 0.5 K humidity uncertainty ~0.1 g kg⁻¹; tolerance 0.2/0.1 g kg⁻¹

20-day average bias

Metrics, parameters and experimental design

- Focus on the first MJO event (15 October to 4 November 2011)
- Consider temperature and specific humidity average profiles
- Metrics:
 - 3 levels for 0: 925, 600 and 200 hPa
 - 2 for q_v : 925 and 700 hPa
- Reference: field campaign observations (radiosounding array),
 - temperature uncertainty ~0.1 K; tolerance 0.5 K
 - humidity uncertainty ~0.1 g kg⁻¹; tolerance 0.2/0.1 g kg⁻¹
- Parameters: same 24 parameters for ARM-Cumulus
 - + 12 for ice microphysics
 - + 4 for cloud radiative properties
- Wave 1 and following: 200 simulations

Specific humidity bias

Not-Ruled-Out-Yet space - Wave 5

Not-Ruled-Out-Yet space - Wave 5

Conclusions and perspectives

Conclusions

- *History Matching with Iterative refocusing*: framework to rigorously explore the parametric calibration of a parameterization/model physics, and identify its structural limits
- Better tuning of the CNRM convective parameterization (in fact the CNRM physics) can be achieved for each of the two 1D cases addressed here.
- The combination of a shallow convection case and a deep convection case (re-)emphasize the difficulty to make the CNRM "unified" convection parameterization work for both. Single-plume mass-flux approach is structurally limited.
- Shallow and deep convection regimes require significantly different entrainment rates.

Perspectives

- Choice of metrics (or the "eye of the expert") is crucial to define and analyse the NROY space, and avoid compensations of errors. Ideally, emulate directly the profile/timeseries would be interesting (ongoing).
- Tolerance-to-error is critical. A priori based on modellers' experience, but the present framework should help to better define it.
- Large and easy access to a **wide 1D case library** is key, to constrain the models as much as possible at the process level.

DEPHY common SCM/LES standard

Motivations

- Ease sharing and traceability of the available library of 1D cases among the modeling community
- Accelerate implementation and diffusion of new cases in each SCM/LES
 - > easily increase the diversity of cases
- Ensure reliability of SCM/LES comparisons; gather the process and modeling communities
- .
- Formalize the ways of forcing a single-column model (and to some extent LES)
- > All the details of a SCM/LES case in one self-documented file
- > Library of SCM/LES cases well-identified, and well-documented

So far

- Version O presented during a dedicated virtual workshop in June 2020 <u>https://www.lmd.jussieu.fr/~hourdin/Workshop1Dstd.html</u> <u>https://github.com/GdR-DEPHY/DEPHY-SCM/tree/master</u>
- Version 1 discussed in a second smaller-scale workshop in January 2021 <u>https://app.slack.com/client/T013CN4Q8TX/C01KG8N9RNV/</u>
- Version 1 to be shared in the coming weeks <u>https://docs.google.com/document/d/1UktLjFMRZnM-kmb_XYU6I082n4FCGGRmI4bwx6uWHHk</u>

Acknowledgments to E. Vignon, F. Couvreux, F. Hourdin, M.-P. Lefebvre, C. Rio, H. Christensen, A. Gettelman, M. Köhler, Z. Tan, L. Denby, S. Boeing, ..., and the DEPHY Community.

운 master -	ະ 😯 3 branches 📀 0 tags
🔥 GdR-DI	EPHY Bugfix for when ts is prov
AMMA/	REF
ARMCU	J
ΑΥΟΤΤΕ	E
BOMEX	/REF
DYNAM	10
GABLS1	1
GABLS4	4
IHOP/RI	EF
MPACE,	/REF
RICO	
SANDU	
SCMS/F	REF
utils	