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Context and motivations 

New atmospheric physics in CNRM-CM6-1 (Roehrig et al. 2020): 
–  Calibration over ~4-5 years (back and forth with model developments) 
–  Calibration “by hand”, one or two parameters at the same time, combining 1D and 3D configurations 
–  New convection parameterization, “unified” (single plume) for both shallow and deep convection 

Ø  Difficulties to calibrate this physics and make it work for both regimes 
 

Recent developments (High-Tune project): 
–  Use of statistical (machine learning) tools from the Uncertainty Quantification community 
–  Rigorously explore the sensitivity of a physics/parameterization to its internal parameters 
–  Framework to identify which model errors are related to calibration issues and which are 

structural to the model 
 

The 1D framework: 
–  Key step in the development of atmospheric parameterizations 
–  Keep the fundamental processes right, reduce the risks for error compensations 
–  Comparison to LES/CRM and observations : a wealth for parameterization development/evaluation 
–  A wide diversity of regimes is needed, and already partly available, with references. 

Ø  Necessary condition for a parameterization to be validated? 
 

All these provide a rigorous framework to address questions such as: 
–  For a given model physics, and independently of calibration issues, is parameterization A better 

than parameterization B ? 
–  Can a unified convection parameterization (such as the one used in CNRM-CM6-1) really capture 

shallow and deep convection? 3	



ARM-Cumulus : diurnal cycle of continental cumulus 
Context and motivations 
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Convection during CINDY2011/DYNAMO 
Context and motivations 

Precipitation 

Field campaign in OND 2011, documenting energy and moisture budget over two arrays in the Indian Ocean 
              (Johnson and Ciesielski, 2013) 
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Framework : Iterative refocusing  
 (Williamson et al. 2017, Salter et al. 2018, Couvreux et al. 2020, Hourdin et al. 2020) 
–  Define target metrics fk and associated references 
–  Identify relevant parameters λ and their uncertainty ranges (input parameter space Λ) 
–  Build an experimental design (learning dataset) 
–  Build emulators fk(λ) for each metrics (Gaussian Processes) 

–  Identify the subset of Λ which cannot be ruled out yet (NROY space) knowing (implausibility) : 
•  Reference uncertainties,  
•  Emulator uncertainties, 
•  Some tolerance-to-error quantifying how close to the reference we think our model can/should be. 
•  Cutoff T on implausibility to define NROY 

 

–  Continue with a 2nd, 3rd, … wave, as long as we need to improve the emulator forecasts (but only where it is 
needed), until convergence towards the true NROY is approximately achieved 

Objectives and Framework 

Objectives 
 
Ø  Explore the parametric uncertainty of the CNRM-CM6-1 convection parameterization for the 

ARM-Cumulus (Brown et al. 2002) et CINDY2011/DYNAMO-NSA (Abdel-Lathif et al. 2018) cases 
Ø  Which errors are calibration issues ? Which are structural ? 

0	
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Metrics, parameters and experimental design 
ARM-Cumulus 

•  Metrics (14): temperature, specific humidity and cloud fraction at a few levels (Hour 10) 
•  Reference: LES simulation with Meso-NH, uncertainty from an ensemble of LES simulations 

•   Parameters (24): 
–  11 related to convective transport (entrainment/detrainment, drag, buoyancy parameter) 
–  2 related with convective closure 
–  1 related to convective cloudiness 
–  6 related with liquid water microphysics 
–  4 related to turbulence 

•  Wave 1: 200 simulations, sampling based on a Latin hypercube 
•  Next waves: 200 simulations (within NROYW-1) 
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Wave 1: 200 simulations 
ARM-Cumulus 

Tolerance-to-error 
•  Potential temperature: 0.5 K except at 3400 m (0.1 K) 
•  Specific humidity: 0.5 g kg-1 

•  Cloud fraction: 5 % 
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Wave 30: 200 simulations 
ARM-Cumulus 

First results 
•  Several calibrations much better than default. 
•  Convergence not fully achieved (especially for cf). 
•  Intrinsic limits of the model physics: 

Ø  Some irregularities in the profile seem intrinsic (in qv especially) 
Ø  Cloud base systematically one level too low 
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Evolution of the Not-Ruled-Out-Yet space 
ARM-Cumulus 

First results 
•  Decrease of cutoff when emulator uncertainty lower than reference uncertainty/tolerance-to-error 
•  After 30 waves, NROY ~0.015% of the input parameter space (~150 over 106 simulations) 
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Dominant parameters 
ARM-Cumulus 

Turbulent	
mixing	and	dissipaAon	

Cloud	
fracAon	

ConvecAon	
entrainment	

Dominant parameters 
–  Turbulent mixing (AKN and ALPHAT) 
–  TKE dissipation (ALD) 
–  Convective cloud fraction (FNEBC) 
–  Organized entrainement modulation 

factor (GCVRE)  
–  Maximum turbulent entrainment 

(TENTRX) 

Reduced turbulent mixing required: 
balance between turbulent and mass-
flux mixing ? 

High entrainment rates required 
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An example of calibration within NROY? 
ARM-Cumulus 
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•  Focus on the first MJO event (15 October to 4 November 2011)  
•  Consider temperature and specific humidity average profiles 
•  Metrics:  

 3 levels for θ: 925, 600 and 200 hPa 
 2 for qv: 925 and 700 hPa 

•  Reference: field campaign observations (radiosounding array), 
  temperature uncertainty ~0.1 K; tolerance 0.5 K    
  humidity uncertainty ~0.1 g kg-1; tolerance 0.2/0.1 g kg-1 

 
 

Metrics, parameters and experimental design 
CINDY2011/DYNAMO 

Specific humidity bias 20-day average bias 
CM6 
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•  Focus on the first MJO event (15 October to 4 November 2011)  
•  Consider temperature and specific humidity average profiles 
•  Metrics:  

 3 levels for θ: 925, 600 and 200 hPa 
 2 for qv: 925 and 700 hPa 

•  Reference: field campaign observations (radiosounding array), 
  temperature uncertainty ~0.1 K; tolerance 0.5 K    
  humidity uncertainty ~0.1 g kg-1; tolerance 0.2/0.1 g kg-1 

•  Parameters: same 24 parameters for ARM-Cumulus  
  + 12 for ice microphysics  
  + 4 for cloud radiative properties 

•  Wave 1 and following: 200 simulations 
 
 

Metrics, parameters and experimental design 
CINDY2011/DYNAMO 

Specific humidity bias 20-day average bias 
CM6 

WAVE 1 



Not-Ruled-Out-Yet space – Wave 5 
CINDY2011/DYNAMO 

15	

Wave convergence not yet achieved, so 
still preliminary results. 

NROY5 ~0.3% of the input space 
 
 
Dominant parameters: 
•  Rain evaporation rate key to get the 

moisture vertical profile right 

•  Some role of LW heating by ice cloud 

•  Convection intensity (closure) is critical 
•  Entrainment still key, but towards more 

moderate values compared to shallow 
convection. 
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Wave convergence not yet achieved, so 
still preliminary results. 

NROY5 ~0.3% of the input space 
 
 
Dominant parameters: 
•  Rain evaporation rate key to get the 

moisture vertical profile right 

•  Some role of LW heating by ice cloud 

•  Convection intensity (closure) is critical 
•  Entrainment still key, but towards more 

moderate values compared to shallow 
convection. 

•  Almost disjoint entrainment parameter 
spaces between shallow and deep cases 

Not-Ruled-Out-Yet space – Wave 5 
CINDY2011/DYNAMO 
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Conclusions and perspectives 

Conclusions 
•  History Matching with Iterative refocusing: framework to rigorously explore the parametric 

calibration of a parameterization/model physics, and identify its structural limits 
 

•  Better tuning of the CNRM convective parameterization (in fact the CNRM physics) can be 
achieved for each of the two 1D cases addressed here. 

•  The combination of a shallow convection case and a deep convection case (re-)emphasize the 
difficulty to make the CNRM “unified” convection parameterization work for both. Single-plume 
mass-flux approach is structurally limited. 

 

•  Shallow and deep convection regimes require significantly different entrainment rates. 
 

Perspectives 
•  Choice of metrics (or the “eye of the expert”) is crucial to define and analyse the NROY space, 

and avoid compensations of errors. Ideally, emulate directly the profile/timeseries would be 
interesting (ongoing). 

•  Tolerance-to-error is critical. A priori based on modellers’ experience, but the present 
framework should help to better define it. 

•  Large and easy access to a wide 1D case library is key, to constrain the models as much as 
possible at the process level.  
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DEPHY common SCM/LES standard 

Motivations 
•  Ease sharing and traceability of the available library of 1D cases among the modeling community 
•  Accelerate implementation and diffusion of new cases in each SCM/LES 

Ø   easily increase the diversity of cases 
•  Ensure reliability of SCM/LES comparisons; gather the process and modeling communities 
•  … 
•  Formalize the ways of forcing a single-column model (and to some extent LES) 

 
Ø  All the details of a SCM/LES case in one self-documented file 
Ø  Library of SCM/LES cases well-identified, and well-documented  

 
So far 

•  Version 0 presented during a dedicated virtual workshop in June 2020 
hMps://www.lmd.jussieu.fr/~hourdin/Workshop1Dstd.html	
hMps://github.com/GdR-DEPHY/DEPHY-SCM/tree/master		

•  Version 1 discussed in a second smaller-scale workshop in January 2021 
hMps://app.slack.com/client/T013CN4Q8TX/C01KG8N9RNV/	

•  Version 1 to be shared in the coming weeks 
https://docs.google.com/document/d/1UktLjFMRZnM-kmb_XYU6Io82n4FCGGRmI4bwx6uWHHk  
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