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Interactive radiation is important, but computationally expensive

• Longwave: cloud top cooling (e.g. Wood, 2012; Klinger et al., 2017)
• Shortwave: surface shading (e.g. Horn et al., 2015; Gronemeier et al., 2017)

2



Interactive radiation is important, but computationally expensive

• Longwave: cloud top cooling (e.g. Wood, 2012; Klinger et al., 2017)
• Shortwave: surface shading (e.g. Horn et al., 2015; Gronemeier et al., 2017)

• Typical approximations in weather and climate models:
 Coarsened horizontal grid in radiation computations (Morcrette, 2000)

 Temporal sampling: infrequent radiation calls (Morcrette, 2000)

 Spectral sampling (Pincus & Stevens, 2009)

3



Interactive radiation is important, but computationally expensive

• Longwave: cloud top cooling (e.g. Wood, 2012; Klinger et al., 2017)
• Shortwave: surface shading (e.g. Horn et al., 2015; Gronemeier et al., 2017)

• Typical approximations in weather and climate models:
 Coarsened horizontal grid in radiation computations (Morcrette, 2000)

 Temporal sampling: infrequent radiation calls (Morcrette, 2000)

 Spectral sampling (Pincus & Stevens, 2009)

Alternative: machine learning
 Emulating a full radiative transfer parametrization (e.g. Chevallier et al., 1998; Krasnopolsky et al.,  2005)

 Emulating part of a radiative transfer parametrization
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Optical properties & radiative transfer
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𝜔𝜔0 Single scattering albedo
𝐵𝐵 Planck source function
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Neural network emulator of RRTMGP

• Neural networks are trained against RRTMGP1 (Pincus et al., 2019) 
 Gaseous optical properties only
 Input: pressure, temperature, water vapour, ozone                                   (per grid cell)
 Output: Optical properties for all 224 (SW) or 256 (LW) 𝑔𝑔-points                           (per grid cell)

• 3 sets of training (95%) and testing (5%) data:
 Pseudo-random perturbations of the 100 atmospheric profiles from RFMIP2 (Pincus et al, 2016)
 Random atmospheric profiles within the p/T/q-parameter space of an RCEMIP3 Large-Eddy Simulation (LES) (Wing et al., 2018)
 Random atmospheric profiles within the p/T/q-parameter space of an LES simulation of developing shallow cumulus grassland 

near Cabauw, the Netherlands
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• Computational costs versus accuracy
 Multiple neural network architectures
 “LES-specific” training
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Neural network architecture is quite straightforward

• Multilayer perceptrons
 1 hidden layer of 32 neurons
 1 hidden layer of 64 neurons
 2 hidden layers of 32 neurons
 2 hidden layers of 64 neurons
 3 hidden layers of 32, 64 and 128 neurons, respectively
 Small networks are required for performance 

• Two separate neural networks per optical property (8 in total)
 Solar/shortwave (SW):     𝜏𝜏𝑠𝑠𝑠𝑠 , 𝜔𝜔0
 Thermal/longwave (LW:  𝜏𝜏𝑙𝑙𝑙𝑙 , 𝐵𝐵
 𝑝𝑝 > 100 hPa & 𝑝𝑝 < 100hPa
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• Multilayer perceptrons
 1 hidden layer of 32 neurons
 1 hidden layer of 64 neurons
 2 hidden layers of 32 neurons
 2 hidden layers of 64 neurons
 3 hidden layers of 32, 64 and 128 neurons, respectively
 Small networks are required for performance 

• Two separate neural networks per optical property (8 in total)
 Solar/shortwave (SW):     𝜏𝜏𝑠𝑠𝑠𝑠 , 𝜔𝜔0
 Thermal/longwave (LW:  𝜏𝜏𝑙𝑙𝑙𝑙 , 𝐵𝐵
 𝑝𝑝 > 100 hPa & 𝑝𝑝 < 100hPa

• Other hyperparameters:
 Mean Squared Error (MSE) loss function
 Leaky ReLU (𝛼𝛼 = 0.2) activation function
 Adam optimizer (Kingma, 2014) 

10



Larger networks clearly have higher prediction skills
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Better predictions give more accurate radiative fluxes
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But at what computational cost?
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LES tuning allows for smaller networks
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LES tuning allows for smaller networks
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Summary
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• Neural network-based emulator of RRTMGP’s gaseous optical predictions
 Predicted optical properties have high accuracy
 Resulting irradiance errors are largely within 1.0 W m-2 (<1%)
 Parametrization is up to 4x faster than RRTMGP
 LES-specific tuning shows great potential
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