Using neural networks to predict atmospheric optical properties for radiative transfer computations

Menno Veerman¹, Robert Pincus^{2,3}, Robin Stoffer¹, Caspar van Leeuwen⁴, Damian Podareanu⁴, Chiel van Heerwaarden¹

¹Meteorology and Air Quality group, Wageningen University and Research, ²University of Colorado, ³NOAA Physical Sciences Laboratory, ⁴SURFsara, Amsterdam

Veerman et al. (2021) Predicting atmospheric optical properties for radiative transfer computations using neural networks. *Phil Trans. R. Soc. A*. A 379: 2020095. https://doi.org/10.1098/rsta.2020.009

Interactive radiation is important, but computationally expensive

- Longwave: cloud top cooling (e.g. Wood, 2012; Klinger et al., 2017)
- Shortwave: surface shading (e.g. Horn et al., 2015; Gronemeier et al., 2017)

Interactive radiation is important, but computationally expensive

- Longwave: cloud top cooling (e.g. Wood, 2012; Klinger et al., 2017)
- Shortwave: surface shading (e.g. Horn et al., 2015; Gronemeier et al., 2017)
- Typical approximations in weather and climate models:
 - Coarsened horizontal grid in radiation computations (Morcrette, 2000)
 - > Temporal sampling: infrequent radiation calls (Morcrette, 2000)
 - Spectral sampling (Pincus & Stevens, 2009)

Interactive radiation is important, but computationally expensive

- Longwave: cloud top cooling (e.g. Wood, 2012; Klinger et al., 2017)
- Shortwave: surface shading (e.g. Horn et al., 2015; Gronemeier et al., 2017)
- Typical approximations in weather and climate models:
 - Coarsened horizontal grid in radiation computations (Morcrette, 2000)
 - > Temporal sampling: infrequent radiation calls (Morcrette, 2000)
 - Spectral sampling (Pincus & Stevens, 2009)

Alternative: machine learning

- > Emulating a full radiative transfer parametrization (e.g. Chevallier et al., 1998; Krasnopolsky et al., 2005)
- > Emulating part of a radiative transfer parametrization

- au Optical depth ω_0 Single scattering albedo
- ω_0 single scattering abede
- *B* Planck source function

Optical properties & radiative transfer

 τ Optical depth

- $\omega_0~$ Single scattering albedo
- *B* Planck source function

Neural network emulator of RRTMGP

- Neural networks are trained against RRTMGP¹ (Pincus et al., 2019)
 - Gaseous optical properties only
 - Input: pressure, temperature, water vapour, ozone
 - > Output: Optical properties for all 224 (SW) or 256 (LW) g-points
- 3 sets of training (95%) and testing (5%) data:
 - > Pseudo-random perturbations of the 100 atmospheric profiles from RFMIP² (Pincus et al, 2016)
 - Random atmospheric profiles within the p/T/q-parameter space of an RCEMIP³ Large-Eddy Simulation (LES) (Wing et al., 2018)

(per grid cell)

(per grid cell)

Random atmospheric profiles within the p/T/q-parameter space of an LES simulation of developing shallow cumulus grassland near Cabauw, the Netherlands

³*Radiative Convective Equilibrium Model Intercomparison Project*

Neural network emulator of RRTMGP

- Neural networks are trained against RRTMGP¹ (Pincus et al., 2019)
 - Gaseous optical properties only
 - Input: pressure, temperature, water vapour, ozone
 - > Output: Optical properties for all 224 (SW) or 256 (LW) g-points
- 3 sets of training (95%) and testing (5%) data:
 - > Pseudo-random perturbations of the 100 atmospheric profiles from RFMIP² (Pincus et al, 2016)
 - Random atmospheric profiles within the p/T/q-parameter space of an RCEMIP³ Large-Eddy Simulation (LES) (Wing et al., 2018)

(per grid cell)

(per grid cell)

- Random atmospheric profiles within the p/T/q-parameter space of an LES simulation of developing shallow cumulus grassland near Cabauw, the Netherlands
- Computational costs versus accuracy
 - Multiple neural network architectures
 - "LES-specific" training

¹RRTM for General circulation model application – Parallel ²Radiative Forcing Model Intercomparison Project

³Radiative Convective Equilibrium Model Intercomparison Project

Neural network architecture is quite straightforward

- Multilayer perceptrons
 - 1 hidden layer of 32 neurons
 - > 1 hidden layer of 64 neurons
 - > 2 hidden layers of 32 neurons
 - 2 hidden layers of 64 neurons
 - > 3 hidden layers of 32, 64 and 128 neurons, respectively
 - Small networks are required for performance
- Two separate neural networks per optical property (8 in total)
 - \succ Solar/shortwave (SW): τ_{sw} , ω_0
 - \succ Thermal/longwave (LW: τ_{lw} , B
 - $\succ p > 100$ hPa & p < 100hPa

Neural network architecture is quite straightforward

- Multilayer perceptrons
 - 1 hidden layer of 32 neurons
 - > 1 hidden layer of 64 neurons
 - > 2 hidden layers of 32 neurons
 - > 2 hidden layers of 64 neurons
 - > 3 hidden layers of 32, 64 and 128 neurons, respectively
 - Small networks are required for performance
- Two separate neural networks per optical property (8 in total)
 - \succ Solar/shortwave (SW): τ_{sw} , ω_0
 - \succ Thermal/longwave (LW: τ_{lw} , B
 - $\succ p > 100$ hPa & p < 100hPa
- Other hyperparameters:
 - Mean Squared Error (MSE) loss function
 - > Leaky ReLU ($\alpha = 0.2$) activation function
 - Adam optimizer (Kingma, 2014)

Better predictions give more accurate radiative fluxes

But at what computational cost?

LES tuning allows for smaller networks

LES tuning allows for smaller networks

Summary

- Neural network-based emulator of RRTMGP's gaseous optical predictions
 - Predicted optical properties have high accuracy
 - ➢ Resulting irradiance errors are largely within 1.0 W m⁻² (<1%)</p>
 - Parametrization is up to 4x faster than RRTMGP
 - LES-specific tuning shows great potential

References

- Morcrette J. 2000: On the effects of temporal and spatial sampling of radiation fields on the ECMWF forecasts and analyses. *Mon. Weather Rev.*, 128, 876–887.
- Chevallier F, Chéruy F, Scott NA, Chédin A. 1998: A neural network approach for a fast and accurate computation of a longwave radiative budget. J. Appl. Meteorol., 37, 1385–1397.
- Gronemeier T, Kanani-Sühring F, Raasch S. 2017: Do shallow cumulus clouds have the potential to trigger secondary circulations via shading? Boundary-layer Meteorol., 162, 143-169
- Horn GL, Ouwersloot HG, Vilà-Guerau de Arellano J, Sikma M. 2015: Cloud shading effects on characteristic boundary layer length scales. *Boundary-layer Meteorol.*, 157, 237-263.
- Klinger C, Mayer B, Jakub F, Zinner T, Park S, Gentine P. 2017: Effects of 3-D thermal radiation on the development of a shallow cumulus cloud field. *Atmos. Chem. Phys, 17, 5477-5500.*
- Krasnopolsky VM, Fox-Rabinovitz MS, Chalikov DV. 2005: New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model. *Mon. Weather Rev.*, 133, 1370–1383.
- Pincus R, Forster PM, Stevens B. 2016: The radiative forcing model intercomparison project (rfmip): Experimental protocol for cmip6. *Geosci. Model Dev.*, 9.
- Pincus R, Mlawer EJ, Delamere JS. 2019: Balancing accuracy, efficiency, and flexibility inradiation calculations for dynamical models. J. Adv. Model. Earth Syst., 11, 3074–3089.
- Pincus R, Stevens B. 2009: Monte carlo spectral integration: a consistent approximation for radiative transfer in large eddy simulations. J. Adv. Model. Earth Syst., 1.
- Wing AA, Reed KA, Satoh M, Stevens B, Ohno T. 2018: Radiative-convective-equilibrium model intercomparison project. *Geosci. Model Dev., 11, 793-813*
- Wood R. 2012: Stratocumulus Clouds. *Mon. Weather Rev., 140, 2373-2423.*