

Evaluation of low-level marine tropical clouds in CMIP6 models: the 'too few too bright' bias

Dimitra Konsta, Jean-Louis Dufresne and Hélène Chepfer

Laboratoire de Météorologie Dynamique LMD, IPSL, Paris

Clouds in Models, 14 April 2021

Method of evaluating clouds in climate models

CMIP6 models : - IPSL-CM6A - CNRM-CM6 - HadGEM3 - MRI - MIROC6 - GFDL + COSP simulator

Objective

- \rightarrow is the too few too bright bias still present in CMIP6 models ?
- \rightarrow is there a common origin of this bias?

Method of evaluating clouds in climate models

Variables under study Cloud Cover and Cloud Reflectance (a proxy of Cloud Albedo)

Region of study Tropical Oceans (30 °S – 30 ° N)

Situations of dominant low-level clouds Criterion : CClow > 0.9 * CC

Temporal resolution Daily (the highest possible giving a view of models' parameterization)

4 years climatology (2007 – 2010)

Cloud Cover

Cloud Reflectance

PARASOL observations

PDF

Relation between Cloud Cover and Cloud Reflectance

cloud cover

Relation between Cloud Cover and Cloud Reflectance

Variation with the environement

 \rightarrow CC increases when LTS increases in models and obs

 \rightarrow obs show that CR increases with LTS opposite to the simulations

 \rightarrow obs show increase of CC with surface wind speed, no dependence for the models

Vertical structure

Variation with Cloud Top Height

- \rightarrow CR increases as clouds rise (greater increase simulated + bias of CR)
- → Models show a much stronger dependence of the CR on cloud geometric thickness

Conclusion

→ The too few and too bright bias still present in CMIP6 models for low level clouds

Biases in the simulation of cloud properties :

- Strato-cumulus clouds on the eastern coast of the oceans are absent or underestimated in many models
- CR decreases with CC in obs, models show inverse or no dependence
- CR increases with LTS in obs but not in models
- CTH is too low for optically thin clouds and increases with CR much faster in models than in obs
- → Can we infer some common origin of this bias among the different climate models?

Hypotheses :

- models simulate too often small cumulus clouds (low CC and high CR) and lack of a variety of low-level cloud types
- lack of taking into account the sub-grid heterogeneity of cloud properties in the models

