Emmy Noether-Programm

Improved Ice Aggregation Formulation in a Two-Moment Microphysics Scheme

Markus Karrer, Davide Ori, Stefan Kneifel University of Cologne (UoC)

> Axel Seifert German Weather Service (DWD)

Motivation

- **Aggregation** is important for **precipitation** formation
- Aggregation is **difficult to simulate** because of:
 - not well-known parameters
 - simplified description necessary

Motivation

- **Aggregation** is important for **precipitation** formation
- Aggregation is **difficult to simulate** because of:
 - not well-known parameters
 - simplified description necessary

 \rightarrow we need cloud observations

How can we use **cloud radar** observations to ...

1) evaluate

2) improve

... the simulation of aggregation?

Methods (1)

2-moment microphysics scheme (*Seifert&Beheng 2006*) as part of:

- simple 1D model
- ICON-LEM (LES version of the ICOsahedral Non-hydrostatic model)

Methods (1)

2-moment microphysics scheme (*Seifert&Beheng 2006*) as part of:

- simple 1D model
- ICON-LEM
 - Small domain; 600m resolution (Schemann et al., 2020)
 - 47 stratiform cases in winter

 → Multi-month dataset (Dias Neto et al., 2019, ESSD)

Methods (1)

2-moment microphysics scheme (*Seifert&Beheng 2006*) as part of:

- simple 1D model
- ICON-LEM
 - Small domain; 600m resolution (Schemann et al., 2020)
 - 47 stratiform cases in winter → Multi-month dataset (*Dias Neto et al.*, 2019, ESSD)
 - Radar forward simulations with **PAMTRA** (Mech et al., 2020)

6

Methods (2): Multi-frequency Doppler Radars

- Mean Doppler velocity (MDV)
 - ~ terminal velocity v_{term}

Methods (2): Multi-frequency Doppler Radars

Universit

Ori et al. (2020, QJRMS)

Institute of Geophysics and Meteorology , Markus Karrer 15.04.2021

9

Universitä zu Kölr

Observation ---- median mean ---- guartile

-40

Institute of Geophysics and Meteorology , Markus Karrer 15.04.2021

Observation ICON (default 2mom-micr.) median -35 mean quartiles - 10¹ relative frequency [%] -30 deciles ບ ⁻²⁵ີ RR>1mm/h RR>1mm/h [deg -20 · 10⁰ ⊢ -15 $-10^{-10^{-1}}$ -5 - 10⁻¹ 0.00 0.25 0.50 0.75 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 1.00 1.25 MDV Ka [m/s] MDV Ka [m/s] **Overestimation of Doppler velocity**

Institute of Geophysics and Meteorology, Markus Karrer 15.04.2021

Wrap-up Part I: Evaluation

Evaluated aggregation in 2mom scheme by **statistics** of **multi-frequency Doppler** radar observations:

overestimated particle velocity & size

Wrap-up Part I: Evaluation

Evaluated aggregation in 2mom scheme by **statistics** of **multi-frequency Doppler** radar observations:

overestimated particle velocity & size

Part II: Improvements

How can we **improve** the simulation of aggregation?

Institute of Geophysics and Meteorology , Markus Karrer 15.04.2021

Aggregation: what matters?

Aggregation rates: f: size distribution m_i,m_j : particle masses $\frac{\partial f(m_i)}{\partial t} \bigg|_{aggregation} = -\int K_{i,j} f(m_i) f(m_j) dm_j$

 $K_{i,j}$: aggregation kernel A_{coll} : collision crosssection Δv_{term} :differential sedimentation E_{ericc} : sticking efficiency Aggregation kernel:

$$K_{i,j} = A_{coll} \Delta v_{term} E_{stick}$$

Institute of Geophysics and Meteorology , Markus Karrer 15.04.2021

Sticking efficiency

Terminal velocity

Collision cross-section

 $\begin{array}{l} \mathsf{K}_{i,j} : \text{ aggregation kernel} \\ \mathsf{A}_{\text{coll}} : \text{ collision cross-section} \\ \Delta \mathsf{v}_{\text{term}} : \text{differential sedimentation} \\ \mathsf{E}_{\text{stick}} : \text{ sticking efficiency} \end{array}$

default

new

Collision cross-section A_{coll} of snowflakes is smaller than circumscribing circles

Institute of Geophysics and Meteorology , Markus Karrer 15.04.2021

18

Size distribution shape

Institute of Geophysics and Meteorology, Markus Karrer 15.04.2021

19

Universitä zu Kölr

a) Setup idealized simulations (constant T,RH profile; no nucleation or advection)

Institute of Geophysics and Meteorology , Markus Karrer 15.04.2021

a) Setup idealized simulations b) Compare with observed CFADs

ICON simulations

Universitä

zu Köl

a) Setup idealized simulations b) Compare with observed CFADs

Statistical comparison including new setup

Too large particles removed by new ice setup

Statistical comparison in new setup

Karrer et al. (in preparation)

Too fast particles removed by new ice setup

Now slightly to slow (too weak riming?)

Institute of Geophysics and Meteorology , Markus Karrer 15.04.2021

Summary

- Evaluated and improved the simulation of aggregation with:
 - **statistics** of **multi-frequency Doppler** radar observations
 - simple 1D model setup
- reduced biases in **particle velocity & size** in ICONs 2mom scheme

Outlook

• investigate connection of ice and rain particle sizes

a) Setup idealized simulations b) Sensitivity analysis

DWRxk-T (top: full statistics, bottom: RR>1mm)

Institute of Geophysics and Meteorology, Markus Karrer 15.04.2021

27

Precipitation statistics at JOYCE

