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Spread in predictions for next ~30-50 years is dominated by
uncertainties in low clouds; uncertainties are poorly quantified

CO2 concentration (ppm)
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Schneider et al., Nature Climate Change 2017



The primary (but not only) source of uncertainties in climate
predictions Is the representation of low clouds in models

http://eoimages.gsfc.nasa.gov

Stratocumulus: colder Cumulus: warmer

We don’t know if we will get more low clouds (damped global warming),
or fewer low clouds (amplified warming) with rising CO: levels



Improving predictions is urgent.

How can we make progress?



We have a wealth of global climate data, whose
potential to Improve models has not been tapped
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We can also simulate some small-scale processes
(e.q., clouds) faithfully, albeit only in limited areas

[ arge-eddy simulation of tropical cumulus
Simulation with PyCLES (Pressel et al. 2015)




Such limited area models can be nested in a global
model and can, in turn, inform the global model

Global model Limited-area model

Thousands of high-resolution simulations can be embedded in global model in a
distributed computing environment (cloud), and the global model can learn from them



Vision: build a model that learns automatically both from
observations and targeted high-resolution simulations

Observations

Ocean Turbulence

Clouds

Targeted High-Resolution Simulations



Data assimilation/ML-accelerated science

Deep learning’s success rests on overparameterization

Data-hungry methods

Leads to challenges with generalization, interpretability, and uncertainty
guantification

Success of reductionist science rests on sparsity

Generalizable and interpretable

Our approach: Combine both, traditional reductionist science with
data science tools where reductionism reaches its limits



We want to use observations, yet need out-of-sample
predictive capabilities and computational feasibility

- We need out-of-sample predictive capabilities (predict a climate we have
not seen), yet want to use present-day observations

- Use known equations of motion to the extent possible to minimize
number of adjustable parameters and avoid overfitting

- Climate data often do not have high temporal resolution but do provide
informative time aggregate statistics

-+ Learn from climate statistics (in contrast to weather states in NWP)
- Running climate models is computationally extremely expensive

- Need fast algorithms for learning about models from data (with
judicious use of ML tools)



How does that actually work?

An example from modeling clouds.



Cloud/boundary layer turbulence schemes in current GCMs
have unphysical discontinuities and many correlated parameters

Deep convection: Often mass flux schemes e.g., Arakawa &
Schubert 1974, Tiedtke 1989; Arakawa & Wu 2013)

Shallow convection: Often also mass flux schemes, but
with discontinuously different parameters (e.q.,
entrainment rates)

Boundary layer turbulence: Often diffusive; difficult to
match with cloud Iayer (e.g.,Troen & Mahrt 1986)

Parametric and structural discontinuities for processes with
common (e.q., ary) limits; plethora of parameters



We use a unified, physics-based model, derived by
conditional averaging of equations of motion

Decomposes domain into environment (/=0) and coherent plumes (i=1, ..., N):
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Parametric functions requiring closure appear in the
coarse-grained equations; can be refined with data

Entrainment and detrainment (exchange between subdomains):

Represented by a physical entrainment length (|bl/w?2) and 1
an adjustable function of nondimensional parameters £,0=c, I f (RH )

Nonhydrostatic pressure gradients

Represented by a combination of buoyancy ~ dp,,
reduction (virtual mass) and pressure drag 0z

= _pa(abb T, Ha'?

Eddy diffusion/mixing length

Mixing length as soft minimum of all possible balances K=c kl\/TKE
between production and dissipation of TKE



Calibration with suite of LES driven by GCM

5-year averaged monthly mean forcing
from HadGEM2-A amip experiments

« Prescribed SST, RRTM, one-moment
microphysics based on Kessler

Domain size: 6km x 6km x 4km,
resolution: 75m x 75m x 20m

- Simulation time: 6 days

& - .




Reduced-order model captures polar and subtropical boundary
layer and clouds (which have vexed climate models for decades)
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Calibrating a climate model and
quantifying its uncertainties

5 c MAW
{ raADE ~ A

REPLAY

JILATIC SHIPPING coa

Andrew Stuart Oliver Dunbar Alfredo Garbuno

NG SUN BRA




We want to improve climate models in a similar way that weather
forecasts have improved, though data assimilation approaches

We are using statistics accumulated in time (e.g., over seasons) to
calibrate model components jointly by:

1. Minimizing model biases, especially biases that are known to
correlate with the climate response of models. That is, we will minimize
mismatches between time averages of ESM-simulated quantities and
data, directly targeting quantities relevant for climate predictions.

2. Minimizing model-data mismatches in higher-order Earth
system statistics, €.g., covariances such as cloud-cover/surface
temperature covariances, which are known to correlate with the climate
response of models. Higher-order statistics relevant for predictions
(e.g., precipitation extremes) are also included in objective function.



We combine calibration and Bayesian approaches
N a three step process for fast Bayesian learning
—— Calibrate —— — Emulate —— - Sample N
y=6(00)+n > G (6) =~ G(0) ~ y=36""(0) +n(0)
Sample parameter Train emulator on MCMC sampling from emulator
space efficiently (EKS/EKI) calibration data to get posterior density

Experimental design (where to place high-resolution
simulations) can be incorporated into CES pipeline

Gives approximate Bayesian posterior (i.e., quantified
uncertainties, including covariance structure of error etc.)



2roof-of-concept in idealized general circulation
model (GCM)

- GCM is an idealized aguaplanet model

It has a simple convection scheme that relaxes
temperature and specific humidities to reference profiles

I — Tref
T

q— RI—Irefq>I< (Tref)
T

0T +v-VT+ -

0gq+v-Vg+ -

- Iwo closure parameters: timescale T and reference
relative humidity RHyes

https://arxiv.org/abs/2012.13262



https://arxiv.org/abs/2012.13262

6. [hrs]

(1) Calibrate with ensemble Kalman inversion

25
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Objective function
has relative
humidity, mean
precipitation, and
precipitation
extremes

Ensemble Kalman
inversion for
parameters in
convection scheme:
ensemble of size 100
converges in ~5
iterations



(2) Emulate parameters-to-statistics map during

calibration step wit
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Effective emulation of model statistics at vanishing marginal cost;
aaaitional important advantage: smoothing of objective function
(can be replace by NNs for better scaling)


http://scikit-learn.org/0.17/_images/plot_gp_regression_001.png

(3) Sample emulator to obtain posterior PDF for
uncertainty quantification

MCMC (600,000 iterations) on GP trained on ensemble gives good
estimate of posterior PDF
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Approximate Bayesian inversion at 1/1000th the cost of standard methods
First calibrate-emulate-sample paper: https.//arxiv.org/abs/2001.03689



https://arxiv.org/abs/2001.03689

We can then draw an ensemble of climate predictions
from the posterior of parameters, for UQ of predictions

Probability of exceeding 99.9th percentile of
control precipitation in warmer climate
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https://arxiv.org/abs/2007.06175
https://arxiv.org/abs/2007.06175
https://arxiv.org/abs/2007.06175
https://arxiv.org/abs/2012.13262

We are pursuing the same approach for all
components of the new Earth system model

Observations

3-year goals

Build a model that learns
automatically from observations
and high-resolution simulations

Achieve improved simulations of
present climate (e.g., rainfall
distribution, rainfall extremes)

Provide predictions with UQ
(including structural errors)
based on olbservations and
high-resolution simulations

& 2
Ocean Turbulence

Targeted High-Resolution Simulations



Conclusions

Reducing and quantifying uncertainties in climate models is urgent but
within reach

- To reduce and guantify uncertainties, we combine process-informed
models with data-driven approaches using climate statistics

Physics-based subgrid-scale models can capture turbulence and cloud
regimes that have vexed climate models for decades

+ Our subgrid-scale models will learn both from observations and (where
possible) from high-resolution simulations spun off on the fly

- Calibrate-emulate-sample forms the core of the data assimilation/
machine learning layer and achieves up to 1,000x speed-up relative to
traditional Bayesian learning methods

Much interesting work (SGS models, more effective filtering strategies,
optimal targeting of high-res simulations...) remains to be done!
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