

Data-Informed Climate Models With Quantified Uncertainties

Tapio Schneider, Andrew Stuart (and the CliMA Team, especially Yair Cohen, Anna Jaruga, Jia He, Ignacio Lopez-Gomez, Zhaoyi Shen, Emmet Cleary, Ollie Dunbar, and Alfredo Garbuno) Spread in predictions for next ~30-50 years is dominated by uncertainties in low clouds; uncertainties are poorly quantified

Schneider et al., Nature Climate Change 2017

The primary (but not only) source of uncertainties in climate predictions is the representation of low clouds in models

http://eoimages.gsfc.nasa.gov

Stratocumulus: colder

Cumulus: warmer

We don't know if we will get more low clouds (damped global warming), or fewer low clouds (amplified warming) with rising CO₂ levels

Improving predictions is urgent. How can we make progress?

We have a wealth of global climate data, whose potential to improve models has not been tapped

We can also simulate some small-scale processes (e.g., clouds) faithfully, albeit only in limited areas

Large-eddy simulation of tropical cumulus

Simulation with PyCLES (Pressel et al. 2015)

Such limited area models can be nested in a global model and can, in turn, inform the global model

Thousands of high-resolution simulations can be embedded in global model in a distributed computing environment (cloud), and the global model can learn from them

Vision: build a model that learns automatically both from observations and targeted high-resolution simulations

Clouds

Targeted High-Resolution Simulations

Data assimilation/ML-accelerated science

- Deep learning's success rests on overparameterization
 - Data-hungry methods
 - Leads to challenges with generalization, interpretability, and uncertainty quantification
- Success of reductionist science rests on sparsity
 - Generalizable and interpretable

Our approach: Combine both, traditional reductionist science with data science tools where reductionism reaches its limits

We want to use observations, yet need out-of-sample predictive capabilities and computational feasibility

- We need out-of-sample predictive capabilities (predict a climate we have not seen), yet want to use present-day observations
 - Use known equations of motion to the extent possible to minimize number of adjustable parameters and avoid overfitting
- Climate data often do not have high temporal resolution but do provide informative time aggregate statistics
 - Learn from **climate statistics** (in contrast to weather states in NWP)
- Running climate models is computationally extremely expensive
 - Need fast algorithms for learning about models from data (with judicious use of ML tools)

How does that actually work? An example from modeling clouds.

Cloud/boundary layer turbulence schemes in current GCMs have unphysical discontinuities and many correlated parameters

- Deep convection: Often mass flux schemes (e.g., Arakawa & Schubert 1974, Tiedtke 1989; Arakawa & Wu 2013)
- Shallow convection: Often also mass flux schemes, but with discontinuously different parameters (e.g., entrainment rates)
- Boundary layer turbulence: Often diffusive; difficult to match with cloud layer (e.g., Troen & Mahrt 1986)

Parametric and structural discontinuities for processes with common (e.g., dry) limits; plethora of parameters

We use a unified, physics-based model, derived by conditional averaging of equations of motion

Decomposes domain into environment (i=0) and coherent plumes (i=1, ..., N):

• Continuity:

$$\frac{\partial(\rho a_{i})}{\partial t} + \frac{\partial(\rho a_{i}\overline{w}_{i})}{\partial z} + \nabla_{h} \cdot (\rho a_{i}\langle \mathbf{u}_{h}\rangle) = \left(\begin{array}{c} \rho a_{i}\overline{w}_{i}\left(\sum_{j}\epsilon_{ij}-\delta_{i}\right)\\ \mu_{ass entrainment/detrainment}\\ \mu_{ass entrainment/det$$

$$\frac{\partial(\rho a_i \overline{\phi'_i \psi'_i})}{\partial t} + \frac{\partial(\rho a_i \overline{w}_i \overline{\phi'_i \psi'_i})}{\partial z} + \nabla_h \cdot \left(\rho a_i \langle \mathbf{u}_h \rangle \overline{\phi'_i \psi'_i}\right) = \underbrace{-\rho a_i \overline{w'_i \psi'_i}}_{\partial z} \frac{\partial \overline{\phi}_i}{\partial z} - \rho a_i \overline{w'_i \phi'_i} \frac{\partial \overline{\psi}_i}{\partial z}$$

Generation/destruction by cross-gradient flux

$$+ \rho a_{i}\overline{w}_{i}\left[\sum_{j}\epsilon_{ij}(\overline{\phi_{j}'\psi_{j}'} + (\overline{\phi}_{j} - \overline{\phi}_{i})(\overline{\psi}_{j} - \overline{\psi}_{i})) - \delta_{i}\overline{\phi_{i}'\psi_{i}'}\right] - \underbrace{\frac{\partial(\rho a_{i}\overline{w_{i}'\phi_{i}'\psi_{i}'})}{\partial z}}_{\text{Turbulent transport}} + \underbrace{\rho a_{i}(\overline{S_{\phi,i}'\psi_{i}'} + \overline{S_{\psi,i}'\phi_{i}'})}_{\text{Sources/sinks}}.$$

(Tan et al., JAMES 2018, Cohen et al. JAMES 2020, Lopez-Gomez et al. JAMES 2020))

Parametric functions requiring closure appear in the coarse-grained equations; can be refined with data

- Entrainment and detrainment (exchange between subdomains): Represented by a physical entrainment length ($|b|/w^2$) and an adjustable function of nondimensional parameters $\mathcal{E}, \delta = c_{\varepsilon} \frac{1}{L} f(RH...)$
- Nonhydrostatic pressure gradients
 Represented by a combination of buoyancy reduction (virtual mass) and pressure drag
- Eddy diffusion/mixing length
 Mixing length as soft minimum of all possible balances between production and dissipation of TKE

$$-\frac{\partial p_{nh}}{\partial z} = -\rho a \left(\alpha_b \overline{b} + \alpha_d \frac{\left(\overline{w}^{up} - \overline{w}^{env} \right) \left| \overline{w}^{up} - \overline{w}^{env} \right|}{Ha^{1/2}} \right)$$

$$K = c_k l \sqrt{TKE}$$

Calibration with suite of LES driven by GCM

- 5-year averaged monthly mean forcing from HadGEM2-A amip experiments
- Prescribed SST, RRTM, one-moment microphysics based on Kessler
- Domain size: 6km x 6km x 4km, resolution: 75m x 75m x 20m
- Simulation time: 6 days

Reduced-order model captures polar and subtropical boundary layer and clouds (which have vexed climate models for decades)

Calibrating a climate model and quantifying its uncertainties

Andrew Stuart

Oliver Dunbar

Alfredo Garbuno

We want to improve climate models in a similar way that weather forecasts have improved, though data assimilation approaches

We are using **statistics accumulated in time** (e.g., over seasons) to calibrate model components jointly by:

- 1. *Minimizing model biases,* especially biases that are known to correlate with the climate response of models. That is, we will minimize mismatches between time averages of ESM-simulated quantities and data, directly targeting quantities relevant for climate predictions.
- 2. *Minimizing model-data mismatches in higher-order Earth system statistics,* e.g., covariances such as cloud-cover/surface temperature covariances, which are known to correlate with the climate response of models. Higher-order statistics relevant for predictions (e.g., precipitation extremes) are also included in objective function.

We combine calibration and Bayesian approaches in a three step process for fast Bayesian learning

- Experimental design (where to place high-resolution simulations) can be incorporated into CES pipeline
- Gives approximate Bayesian posterior (i.e., quantified uncertainties, including covariance structure of error etc.)

Proof-of-concept in idealized general circulation model (GCM)

- GCM is an idealized aquaplanet model
- It has a simple convection scheme that relaxes temperature and specific humidities to reference profiles

$$\partial_t T + v \cdot \nabla T + \dots = -\frac{T - T_{\text{ref}}}{\tau}$$
$$\partial_t q + v \cdot \nabla q + \dots = -\frac{q - RH_{\text{ref}}q^*(T_{\text{ref}})}{\tau}$$

• Two closure parameters: timescale τ and reference relative humidity RH_{ref}

(Dunbar et al., submitted, https://arxiv.org/abs/2012.13262)

(1) Calibrate with ensemble Kalman inversion

Objective function has *relative humidity, mean precipitation, and precipitation extremes*

Ensemble Kalman *inversion* for parameters in convection scheme: ensemble of size 100 converges in ~5 iterations

(2) **Emulate** parameters-to-statistics map during calibration step with Gaussian processes

(3) **Sample** emulator to obtain posterior PDF for uncertainty quantification

MCMC (500,000 iterations) on GP trained on ensemble gives good estimate of posterior PDF

Approximate Bayesian inversion at 1/1000th the cost of standard methods First calibrate-emulate-sample paper: <u>https://arxiv.org/abs/2001.03689</u>

We are pursuing the same approach for all components of the new Earth system model

3-year goals

- Build a model that learns automatically from observations and high-resolution simulations
- Achieve improved simulations of present climate (e.g., rainfall distribution, rainfall extremes)
- Provide predictions with UQ (including structural errors) based on observations and high-resolution simulations

Conclusions

- Reducing and quantifying uncertainties in climate models is urgent but within reach
- To reduce and quantify uncertainties, we combine process-informed models with data-driven approaches using climate statistics
- Physics-based subgrid-scale models can capture turbulence and cloud regimes that have vexed climate models for decades
- Our subgrid-scale models will learn both from observations and (where possible) from high-resolution simulations spun off on the fly
- Calibrate-emulate-sample forms the core of the data assimilation/ machine learning layer and achieves up to 1,000x speed-up relative to traditional Bayesian learning methods

Much interesting work (SGS models, more effective filtering strategies, optimal targeting of high-res simulations...) remains to be done!

With thanks to CliMA's funders

ERIC AND WENDY SCHMIDT

SCHMIDT FUTURES

CHARLES TRIMBLE

RONALD AND MAXINE LINDE CLIMATE CHALLENGE

