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Spread in predictions for next ~30-50 years is dominated by 
uncertainties in low clouds; uncertainties are poorly quantified

Schneider et al., Nature Climate Change 2017
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The primary (but not only) source of uncertainties in climate 
predictions is the representation of low clouds in models

Stratocumulus: colder Cumulus: warmer
h"p://eoimages.gsfc.nasa.gov	

We don’t know if we will get more low clouds (damped global warming), 
or fewer low clouds (amplified warming) with rising CO2 levels



Improving predictions is urgent. 

How can we make progress?



We have a wealth of global climate data, whose 
potential to improve models has not been tapped



We can also simulate some small-scale processes 
(e.g., clouds) faithfully, albeit only in limited areas

Simulation with PyCLES (Pressel et al. 2015)
Large-eddy simulation of tropical cumulus 



Such limited area models can be nested in a global 
model and can, in turn, inform the global model

Limited-area modelGlobal model

Thousands of high-resolution simulations can be embedded in global model in a 
distributed computing environment (cloud), and the global model can learn from them



Vision: build a model that learns automatically both from 
observations and targeted high-resolution simulations



Data assimilation/ML-accelerated science

• Deep learning’s success rests on overparameterization 
• Data-hungry methods 

• Leads to challenges with generalization, interpretability, and uncertainty 
quantification 

• Success of reductionist science rests on sparsity 
• Generalizable and interpretable 

Our approach: Combine both, traditional reductionist science with 
data science tools where reductionism reaches its limits



We want to use observations, yet need out-of-sample 
predictive capabilities and computational feasibility

• We need out-of-sample predictive capabilities (predict a climate we have 
not seen), yet want to use present-day observations 

• Use known equations of motion to the extent possible to minimize 
number of adjustable parameters and avoid overfitting 

• Climate data often do not have high temporal resolution but do provide 
informative time aggregate statistics 

• Learn from climate statistics (in contrast to weather states in NWP) 

• Running climate models is computationally extremely expensive 

• Need fast algorithms for learning about models from data (with  
judicious use of ML tools)



How does that actually work? 

An example from modeling clouds.



Cloud/boundary layer turbulence schemes in current GCMs 
have unphysical discontinuities and many correlated parameters

• Deep convection: Often mass flux schemes (e.g., Arakawa & 
Schubert 1974, Tiedtke 1989; Arakawa & Wu 2013) 

• Shallow convection: Often also mass flux schemes, but 
with discontinuously different parameters (e.g., 
entrainment rates) 

• Boundary layer turbulence: Often diffusive; difficult to 
match with cloud layer (e.g.,Troen & Mahrt 1986) 

Parametric and structural discontinuities for processes with 
common (e.g., dry) limits; plethora of parameters



We use a unified, physics-based model, derived by 
conditional averaging of equations of motion

(Tan et al., JAMES 2018, Cohen et al. JAMES 2020, Lopez-Gomez et al. JAMES 2020))

Decomposes domain into environment (i=0) and coherent plumes (i=1, …, N): 

• Continuity: 

• Scalar mean: 

• Scalar covariance

subdomains (second term). From the large-scale model perspective, h/i represents the resolved GS mean,
and h/!w!i represents the SGS fluxes and (co-)variances of scalars that need to be parameterized.

2.2. Dynamic Equations for Subdomains
In deriving dynamic equations for mean fields and covariances in the subdomains, we make the following
simplifying assumptions:

1. Horizontal variations of density q are neglected, except in the calculation of vertical accelerations. This
makes the EDMF scheme similar to a subdomain-averaged anelastic system, and area-weighted averages
over subdomains as in equations (2) and (3) are equivalent to mass-weighted averages.

2. Horizontal variations of SGS statistics (mean fields and covariances) are neglected, so that only deriva-
tives with respect to time t and height z appear (boundary-layer approximation).

3. Mean horizontal velocities uh5ðu; vÞ in any subdomain are taken to be equal to the domain-mean values
huhi, so that only advection by domain-mean horizontal velocities contributes to SGS horizontal fluxes.

4. Fluid masses exchanged between any two subdomains by entrainment or detrainment carry with
them the mean properties of the subdomains (mean-field approximation). This also applies to
exchange of covariances among subdomains: they are entrained or detrained like other fluid
properties.

With these assumptions, the continuity equation for the area fraction ai becomes
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(6)

Here, rh5ð@=@x; @=@yÞ is the del operator in the horizontal plane. The rh-terms are included to allow for
the horizontal advection of SGS properties across grid cells. The fractional entrainment rate !ij gives the rate
of entrainment into subdomain i from subdomain j, defined so that !ij5ðqaiw iÞ21Eij , where Eij is the mass
entrained per unit time into subdomain i from j (normalized by the area of the entire domain). The fractional
detrainment rate di gives the rate of detrainment from subdomain i into all other subdomains, defined so
that di5ðqaiw iÞ21Di , where Di is the mass detrained from subdomain i. (Into which subdomain the mass is
detrained does not matter for the subdomain i from which it is detrained. Hence, the subscript j only
appears in the entrainment rate for subdomain i, because the properties of the air entrained from subdo-
main j matter for i.) By mass conservation, any mass detrained from subdomain j must be entrained by other
subdomains (or re-entrained by j), so that Dj5

P
i Eij , and thus

qajw jdj5
X

i

qai w i!ij: (7)

Exact definitions of entrainment and detrainment rates have been given, e.g., by de Rooy et al. (2013) and
Yano (2014a). They are reproduced with slight modifications in Appendix A for reference. A detailed deriva-
tion of the covariance equation (6) is given in Appendix B.
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Closure functions



• Entrainment and detrainment (exchange between subdomains): 
Represented by a physical entrainment length (|b|/w2) and  
an adjustable function of nondimensional parameters

Parametric functions requiring closure appear in the 
coarse-grained equations; can be refined with data
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K = ckl TKE

• Nonhydrostatic pressure gradients 
Represented by a combination of buoyancy 
reduction (virtual mass) and pressure drag

• Eddy diffusion/mixing length 
Mixing length as soft minimum of all possible balances  
between production and dissipation of TKE



Calibration with suite of LES driven by GCM

• 5-year averaged monthly mean forcing 
from HadGEM2-A amip experiments


• Prescribed SST, RRTM, one-moment 
microphysics based on Kessler


• Domain size: 6km x 6km x 4km, 
resolution: 75m x 75m x 20m


• Simulation time: 6 days
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Figure 1. Profiles of (a) potential temperature and (b) horizontal velocity averaged over the

ninth hour of the GABLS simulation. Results are shown for LES and for the EDMF-based SCM

with �z = 3.125 m, �z = 12.5 m, and �z = 50 m. The shaded region represents the spread of

LES results with �z=3.125 m reported in Beare et al. (2006).

ing the same resolution, is also included for reference. The SCM simulations are performed306

at vertical resolutions of �z = 3.125 m, 12.5 m, and 50 m (128, 32, and 8 degrees of307

freedom, respectively). This range characterizes the performance of the EDMF scheme308

both at high resolution and for coarser resolutions typical of regional and global climate309

models in the lower troposphere.310

4.1.2 Results311

Figure 1 shows vertical profiles of h✓i, hui and hvi time-averaged over the ninth hour312

of simulation. The EDMF scheme captures well the boundary layer height and the in-313

tensity of the low-level jet, with little resolution dependence of the mean profiles up to314

�z = 12.5 m. At 50 m resolution, the SCM predicts a slightly deeper boundary layer.315

The EDMF-simulated TKE follows closely the LES data, as shown in Figure 2. The time-316

series show periods of TKE growth due to the subgrid momentum flux from the surface317

layer, and periods of decay due to the increasing stratification. These changes in verti-318

cally integrated TKE are much smaller than the integrated TKE production and dissi-319

pation terms, as shown in Figure 3. The domain-mean TKE budget, which coincides with320

the environmental budget for stable conditions, is shown in Figure 3.321

The two main causes of grid-sensitivity at 50 m resolution are the inability to cap-322

ture the region of maximum shear production close to the surface, and the deterioration323

of the friction velocity diagnosis. The e↵ect of the former can be observed in Figure 3.324

Even if the budget is correctly captured above 50 m, the absence of grid-cells at the lower325

levels results in a significant reduction of the vertically integrated production and dis-326

sipation. In addition, the diagnosis of u⇤ based on Byun (1990) overestimates the fric-327

tion velocity at coarser resolutions. This can be observed by comparing the normalized328

TKE profile to the vertically integrated timeseries in Figure 2.329

The dominant mixing length throughout the simulation is shown in Figure 2 for330

all heights. Initially, the wall-limited mixing length lw is dominant below the inversion,331

due to the absence of mean shear and stratification. As the shear and stratification de-332

velop, the dominant mixing length profile attains a three-layered structure. Closest to333

–14–

Polar boundary layer

Reduced-order model captures polar and subtropical boundary 
layer and clouds (which have vexed climate models for decades)
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Parameterization

Observations

Stratocumulus-topped BL
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of the friction velocity diagnosis. The e↵ect of the former can be observed in Figure 3.324

Even if the budget is correctly captured above 50 m, the absence of grid-cells at the lower325

levels results in a significant reduction of the vertically integrated production and dis-326

sipation. In addition, the diagnosis of u⇤ based on Byun (1990) overestimates the fric-327

tion velocity at coarser resolutions. This can be observed by comparing the normalized328

TKE profile to the vertically integrated timeseries in Figure 2.329

The dominant mixing length throughout the simulation is shown in Figure 2 for330

all heights. Initially, the wall-limited mixing length lw is dominant below the inversion,331

due to the absence of mean shear and stratification. As the shear and stratification de-332

velop, the dominant mixing length profile attains a three-layered structure. Closest to333
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Lopez-Gomez et al. (submitted)

Shallow cumulus

Deep convection 
LES updraft velocity [m/s]

SCM updraft velocity [m/s]



Calibrating a climate model and 
quantifying its uncertainties

Andrew Stuart Oliver Dunbar Alfredo Garbuno



We want to improve climate models in a similar way that weather 
forecasts have improved, though data assimilation approaches

We are using statistics accumulated in time (e.g., over seasons) to 
calibrate model components jointly by: 

1. Minimizing model biases, especially biases that are known to 
correlate with the climate response of models. That is, we will minimize 
mismatches between time averages of ESM-simulated quantities and 
data, directly targeting quantities relevant for climate predictions. 

2. Minimizing model-data mismatches in higher-order Earth 
system statistics, e.g., covariances such as cloud-cover/surface 
temperature covariances, which are known to correlate with the climate 
response of models. Higher-order statistics relevant for predictions 
(e.g., precipitation extremes) are also included in objective function. 



We combine calibration and Bayesian approaches 
in a three step process for fast Bayesian learning

4 CLEARY, GARBUNO-INIGO, LAN, SCHNEIDER & STUART

noisy, the Gaussian process emulation also serves to remove the noise, resulting in a
more practical Bayesian inference via MCMC.

• We demonstrate the methodology with numerical experiments on a linear problem, on
a Darcy flow inverse problem and on the Lorenz ’63 and ’96 models.

In section 2, we describe the calibrate-emulate-sample method introduced in this paper.
In section 4, we study the inverse problem of determining permeability from pressure in
Darcy flow, a nonlinear inverse problem in which the coe�cients of a linear elliptic partial
di↵erential equation (PDE) are to be determined from linear functionals of its solution. Section
5 is devoted to the inverse problem of determining parameters appearing in time-dependent
di↵erential equations from time-averaged functionals of the solution. We view finite time-
averaged data as noisy infinite time-averaged data and use GP emulation to estimate the
parameter-to-data map and the noise induced through finite time-averaging; applications to
Lorenz’s (1963) and (1996) models are described.

2. CALIBRATE-EMULATE-SAMPLE
sec:M
f:1

y = G(M)(✓) + ⌘(✓)

Sample

G(M)(✓) ⇡ G(✓)

Emulate

y = G(✓) + ⌘

Calibrate

(a) Framework

y = G(M)(✓) + ⌘(✓)

MCMC

G(M)(✓) ⇡ G(✓)

GP

y = G(✓) + ⌘

EKI/EKS

(b) Methods

Fig 1. Schematic of approximate Bayesian inversion method to find ✓ from y. The EKI/EKS produce a small
number of approximate (expensive) samples {✓(m)}Mm=1. These are used to train a GP approximation G(M) of
G, used within MCMC to produce a large number of approximate (cheap) samples {✓(k)}Kk=1, K � M.

2.1 Overview

Consider unknown parameters ✓ related to data y through the forward model G and noise
⌘:

y = G(✓) + ⌘. (2.1) {eq:IP}

The inverse problem is to find ✓ from y, given knowledge of G : Rp
! Rd and some information

about the noise level such as its size (classical approach) or distribution (statistical approach),
but not its value. To formulate the Bayesian inverse problem, we assume, for simplicity, that
the noise is drawn from a Gaussian with distribution N(0,�y), that the prior on ✓ is the
Gaussian N(0,�✓), and that ✓ and ⌘ are a priori independent. If we define1

�R(✓) =
1

2
ky � G(✓)k2�y

+
1

2
k✓k

2
�✓
, (2.2) {eq:phi}

1For any positive-definite symmetric matrix A, we define ha, a0iA = ha,A�1a0i = hA� 1
2 a,A� 1

2 a0i and

kakA = kA� 1
2 ak.

Sample parameter  
space efficiently (EKS/EKI)

Train emulator on  
calibration data

MCMC sampling from emulator  
to get posterior density  

• Experimental design (where to place high-resolution 
simulations) can be incorporated into CES pipeline 

• Gives approximate Bayesian posterior (i.e., quantified 
uncertainties, including covariance structure of error etc.)

Cleary, Garbuno-Inigo, Lan, Schneider, Stuart, J. Comp. Phys., 2020



Proof-of-concept in idealized general circulation 
model (GCM)

• GCM is an idealized aquaplanet model 

• It has a simple convection scheme that relaxes 
temperature and specific humidities to reference profiles 

• Two closure parameters: timescale 𝜏 and reference 
relative humidity RHref

∂tT + v ⋅ ∇T + ⋯ = −
T − Tref

τ

∂tq + v ⋅ ∇q + ⋯ = −
q − RHrefq*(Tref)

τ

(Dunbar et al., submitted, https://arxiv.org/abs/2012.13262)

https://arxiv.org/abs/2012.13262


(1) Calibrate with ensemble Kalman inversion

Objective function 
has relative 
humidity, mean 
precipitation, and 
precipitation 
extremes  

Ensemble Kalman 
inversion for 
parameters in 
convection scheme: 
ensemble of size 100 
converges in ~5 
iterations

Courtesy Emmet Cleary



(2) Emulate parameters-to-statistics map during 
calibration step with Gaussian processes

 )

Effective emulation of model statistics at vanishing marginal cost; 
additional important advantage: smoothing of objective function 

(can be replace by NNs for better scaling)
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Figure 4: Data prediction of GP (and GCM) (noise distribution �⇤) at the
true parameter ✓† (the first three rows) of y†. The final row (in dark red) is a
prediction using the benchmark GP on the regular grid.
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http://scikit-learn.org/0.17/_images/plot_gp_regression_001.png


(3) Sample emulator to obtain posterior PDF for 
uncertainty quantification

MCMC (500,000 iterations) on GP trained on ensemble gives good 
estimate of posterior PDF

Kalman  
ensemble

Approximate Bayesian inversion at 1/1000th the cost of standard methods 
First calibrate-emulate-sample paper: https://arxiv.org/abs/2001.03689

https://arxiv.org/abs/2001.03689


We can then draw an ensemble of climate predictions 
from the posterior of parameters, for UQ of predictions
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Figure 6: 20-year prediction plots of atmospheric quantities for no-warming
(left column) and warming (right column) scenarios. The first two rows display
relative humidity and daily precipitation. The final row is the probability of
daily precipitation exceeding a 99.9th percentile i.e a 1-in-1000 day extreme
event. In blue we show the prediction mean (line) and 95% confidence (ribbon)
from fixed parameters and di↵erent initial conditions. In orange we show the
prediction mean (line) and 95% confidence (ribbon) coming from sampling (100)
parameters from the posterior distribution.
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Probability of exceeding 99.9th percentile of 
control precipitation in warmer climate

• Quantifying risks in 
tails of distributions is 
crucial for assessing 
risks of climate 
impacts 

• Can also incorporate 
sparse learning about 
structural model error 
(https://arxiv.org/abs/
2007.06175)

(Dunbar et al., submitted, https://arxiv.org/abs/2012.13262)

https://arxiv.org/abs/2007.06175
https://arxiv.org/abs/2007.06175
https://arxiv.org/abs/2007.06175
https://arxiv.org/abs/2012.13262


3-year goals 

• Build a model that learns 
automatically from observations 
and high-resolution simulations 

• Achieve improved simulations of 
present climate (e.g., rainfall 
distribution, rainfall extremes) 

• Provide predictions with UQ 
(including structural errors) 
based on observations and 
high-resolution simulations

We are pursuing the same approach for all 
components of the new Earth system model



Conclusions

• Reducing and quantifying uncertainties in climate models is urgent but 
within reach 

• To reduce and quantify uncertainties, we combine process-informed 
models with data-driven approaches using climate statistics 

• Physics-based subgrid-scale models can capture turbulence and cloud 
regimes that have vexed climate models for decades 

• Our subgrid-scale models will learn both from observations and (where 
possible) from high-resolution simulations spun off on the fly 

• Calibrate-emulate-sample forms the core of the data assimilation/
machine learning layer and achieves up to 1,000x speed-up relative to 
traditional Bayesian learning methods 

Much interesting work (SGS models, more effective filtering strategies, 
optimal targeting of high-res simulations…) remains to be done!



With thanks to CliMA’s funders

ERIC AND WENDY SCHMIDT


