

RF – interference mitigation process

How to handle external radar interference sources?

Author:Maximilian SchaperDate:17.11.2021

WXRCalMon2021 – Maximilian Schaper, Michael Frech

Motivation

Deutscher Wetterdienst

WXRCalMon2021 – Maximilian Schaper, Michael Frech

RFI detection (WXRCalMon2019)

- ➔ Detecting "disturbed" rays via ray based criteria
- → Identifying RF-interference (RFI) sources
 - → Collecting rays for 24h
 - → Applying thresholds to identify "strong" and "persistent" RFIs

"persistent"	RFI:	SNRh > 0dB	&	disturbance fraction > 10%	
"strong"	RFI:	SNRh > 20dB	&	disturbance fraction > 1%	

RFI detection visualisation

DWD

Disturbed rays
 with mean SNRh

→ …over 30 days

 2 regions pass the RFI thresholds

Content

- Communicating detected interferences
- Independent verification method
 - → "RHunt" hardware
 - → comparison to operational data
- → Mitigation experience over 5 years of data collection

Communicating detected RFIs

How to provide and forward the detection results?

Communicating detected interferences

- → operational procedure in place since 2020
- detection results aggregated in HTML-table (and additional PNGs)
 - → daily aggragation of the RFIs within the last 7 days
 - → manual verification and further actions
- communication towards the NRA (BNetzA)
 - → reporting evaluated interference via an email which results in a BNetzA-Ticket
 - → on site visits with DWD technicans to identify sources
 - → monthly report of interferences via an aggragated table
 - → to keep track of short term interferences which would go unnoticed otherwise

HTML-table of RFIs in last 7 days

→ One row corresponds to:
1 RFI + 1 site + 1 day

WXRCalMon2021 – Maximilian Schaper, Michael Frech

Independent verification method

How to independently verify the detection results?

RFI detection verification method

- current RFI detection is based on received and processed radar pulses
- reliable verification is only possible with an independent measurement
 BUT from 2 years of experience RFI detection does not have false positives

→ Goal:

detect WLANs as independent as possible from the radar HW and processing

Approach: verification has to use the same signal that the radar receives

Receiver setup for independent verification

WXRCalMon2021 – Maximilian Schaper, Michael Frech

Rhunt result – MHP 22.09.2021

Rhunt result – PRO 27.10.2021

Improving the independet verification

- → Using a more suitable detection device wich can...
 - → report the actual power measurement
 - → analyze the received spectrum detect unidentifiable RFI sources
- → While trying to keep the signal processing step to a minimum

Mitigation experience over 5 years

What can be achived using the current mitigation process?

WXRCalMon2021 - Maximilian Schaper, Michael Frech

Historic overview of detected RFIs

DWD

 Heatmap of monthly "RF-interference sources" for each radar site

What do 2.6 RFIs look like?

Historic overview of detected RFIs

Conclusion

- → We setup a versatile software framework (Python)
 - → RHunt control SW can be used as command line tool to aid technicians on site
- Experience with operational mitigation process over 1.5 years is very positive
 - → There is always a RFI source to be found if one was detected
 - → Persistent RFIs can be removed very effectively
 - → But a continuous effort is still mandatory
- Outlook:
 - → Test more capable RHunt hardware (power spectrum analysis)
 - → Setup a robust analysis of short term RFIs
 - → They can **not** be tracked down by NRA, but reporting there existance is important

RFI detection algorithm (1/2)

→ detecting "disturbed" rays

 \rightarrow "disturbance" criteria:

mean $SQI_h < 0.6$ detects non-coherent signals (not reflected - external)mean $STD_h > 0.6$ detects short pulsed signals (RLAN communication)

 \rightarrow STD_h => standard deviation of received power within a range gate between single pulses

> NOTE: based on interference detection approach used in the GAMIC signalprocessor "Enigma3p"

RFI detection algorithm (2/2) – Details in Anhang

- → identifying interference sources
 - → collecting disturbed rays for 24h
 - → selecting rays based on SNR_h
 - → binning rays based on azimuth
 - grouping neighboring bins above predefined disturbance threshold
- disturbed rays [%] PRO - 21.10.2021 - only SNRh >0dB 50 75 100 SNRH [db] 25 25 360 360 340 340 320 320 20 · ★ 32 6% 300 300 301°-302° | 301.6°/0.5° | 9.5d 280 280 260 260 15 · 240 240 azimuth [deg] 220 200 220 10 -200 180 180 160 160 5 · 140 140 120 120 0 100 100 80 80 60 60 -5 40 40 20 20 -100. 06:00 09:00 12:00 15:00 18:00 21:00 00:00 00:00 03:00 0 100 200 20.10.2021 daytime [hour:minute] disturbed rays [count]

→ Thresholds:

"persistent"	RFI:	SNRh > 0dB	&	disturbance fraction > 1	0%
"strong"	RFI:	SNRh > 20dB	&	disturbance fraction >	1%