## Calibrating Operational Radar by Dual-Polar Self-Consistency

Rob Thompson & Anthony Illingworth Department of Meteorology

University of Reading

And thanks to the Met Office

### 1. How Accurately Do We Need Z?



 Calibrating radar is of critical importance if we are to estimate the rainfall accurately and without significant bias.

## If Z = 200 R<sup>1.6</sup>

## Calibrating Z to ±1dB for R to 0.6dB (15%) Z to ±0.5dB for R to 0.3dB (~ 7%)

• Absolute calibration is difficult, but essential.

 But If the hardware doesn't change and transmitted power is monitored the calibration should be stable.

#### 2. Comparing Radar to Disdrometer



- Compare each scan (5 minutes) 600m radar pixel above disdrometer.
- Radar pixel is 19km range and 700m above the disdrometer.
- Only include very high quality scans ( $\rho_{hv}$  limit to avoid any clutter)
- But there's a scan-scan random error of 3dB (wind drift, representativity etc.)
- Can take months for enough hits to converge with sufficient accuracy.
- 2 years continuous monitoring showed hardware stable to better than 1dB... resulted in a +2dB change to whole UK network in Dec. 2019.
- Not practical to have calibrated disdrometer for every radar.

# 3. Naturally occurring rain has a unique Reading relationship between K<sub>DP</sub>/Z and Z<sub>DR</sub> by chance

- 12 years of rainfall each minute from a disdrometer.
- Colour scale is the log of the occurrence.
- For a given value of  $Z_{\rm DR}$  the value of  $K_{\rm DP}/Z$  varies by less than 5%
- So adjust the calibration of Z so all the data lie on the black line?



WXRCalMon 2021 - Thompson & Illingworth

# 3. Naturally occurring rain has a unique Reading relationship between K<sub>DP</sub>/Z and Z<sub>DR</sub> by chance

- 12 years of rainfall each minute from a disdrometer.
- Colour scale is the log of the occurrence.
- For a given value of  $Z_{\rm DR}$  the value of  $K_{\rm DP}/Z$  varies by less than 5%
- So adjust the calibration of Z so all the data lie on the black line?

#### NO! NO! NO!

- FOR OPERATIONAL RADARS  $\Phi_{DP}$  HAS A NOISE OF ABOUT 1 OR 2 DEGREES SO  $K_{DP}$ , the differential of  $\Phi_{DP}$ , IS VERY NOISY!
- Need to integrate  $\Phi_{DP}$  along a ray and adjust Z so the total phase change agrees with observations.



WXRCalMon 2021 - Thompson & Illingworth

#### WXRCalMon 2021 - Thompson & Illingworth

#### 4. Why Avoiding Clutter is So Important

- Polarisation parameters data quality is fundamental!
- Suppose rain Z = 20dBZ = 100 (linear)
- Now have ground clutter 20dB below the rain signal
- Z goes from 100 to 101 (so increase of just 0.04dB)
- Z<sub>DR</sub> may also change by 0.04dB
- BUT... Z is intensity, amplitude of clutter is 10% of rain.
- This will add 5.7° of random noise in  $\Phi_{\text{DP}}$  .
- If the clutter is just noise in H and V (uncorrelated)  $\rho_{HV}$  drops by 1% e.g. That means  $\rho_{hv}$  falls from 0.99 to 0.98.
- Avoid low  $\rho_{hv}$ , weight  $\Phi_{DP}$  using  $\rho_{hv}$  to maximise use of the cleanest pixels.





## 5. Instead of differentiating a noisy $\Phi_{DP}$ integrate it along a ray!

- Adjust the Z calibration until best fit of  $\Phi_{\text{DP}}$  along a ray agrees with the observed change in  $\Phi_{\text{DP}}$ .
- Individual values of  $\Phi_{\rm DP}$  have scatter around the best fit.
- Each green line represents a change in calibration of 1dB.



WXRCalMon 2021 - Thompson & Illingworth

# 5. Instead of differentiating a noisy $\Phi_{\text{DP}}$ integrate it along a ray!

- Adjust the Z calibration until best fit of  $\Phi_{\text{DP}}$  along a ray agrees with the observed change in  $\Phi_{\text{DP}}$ .
- Individual values of  $\Phi_{\rm DP}$  have scatter around the best fit.
- Each green line represents a change in calibration of 1dB.
- Adjust the calibration of Z to minimise the cost function of the scatter of each,  $\rho_{hv}$  weighted,  $\Phi_{DP}$  around the theoretical green line.
- Correlation between the weighted observations and best fit gives quality of the fit.



WXRCalMon 2021 - Thompson & Illingworth

#### 6. How Accurate Do We Need Z<sub>DR</sub>?

- Calibration of Z<sub>DR</sub> is potentially problematic (see workshop session 8)
- Majority of observed phase shift occurs where  $Z_{\rm DR}$  between 1 and 2 dB
- Slope of the K<sub>DP</sub>/Z curve suggests a change of about 7%  $\Phi_{DP}$  for a 0.2 dB change in Z<sub>DR</sub>.
- Tests show that introducing an artificial bias in  $Z_{DR}$  of 0.2dB changes derived calibration by only about 0.3dBZ.





WXRCalMon 2021 - Thompson & Illingworth

### 7. Calibrating Operational Radars



- Must be sure that only rain is the target  $\rho_{hv}$  weighting.
- In summer avoid hail so limit max Z to 50dBZ.
- Use rain in the range up to ~45km to avoid beam filling problems
- Avoid significant rain over the radar
  - a wet radome will attenuate and produce an apparent change in calibration.
- During winter time, avoid bright band & less heavy rain.
  - Fewer opportunities for calibration.
- UK rain max  $\rho_{hv}$ >0.996 but high  $Z_{DR}$  rain has  $\rho_{hv}$  of 0.98, lower  $\rho_{hv}$  if cluttered.
- ONLY ACCEPT RAYS WITH >0.95 CORRELATION BETWEEN OBSERVED AND THEORETICAL  $\Phi_{DP}$  AND WITH LARGE  $\Phi_{DP}$  SHIFT RELATIVE TO ITS NOISE.

### 8. Example of 28 July 2021

- Band of convection approaching the Dean Hill radar
- Not yet raining at the radome (no radome attenuation)

40

30

20

10

-10

-20

- Well under bright band
- Many rays with enough  $\Phi_{\rm DP}$
- ρ<sub>hv</sub>> is high if good SNR,
  0.996 in light rain.





WXRCalMon 2021 - Thompson & Illingworth

#### 9. Examples From 28 July





WXRCalMon 2021 - Thompson & Illingworth

#### 10. The 2dB change in December 2019



- On 9<sup>th</sup> December 2019 Radar Calibration of UK network changed by 2.0dB
- Change because disdrometer comparisons indicated 2dB miscalibration



### **11. Summary**



- Radar-Disdrometer comparison shows radars are stable over 2 years.
  - But need months to converge on a precise calibration value
  - Needs a well calibrated disdrometer for each radar
- Differential phase shift accumulation can calibrate operational radar
- Must use high quality data with high  $\rho_{hv}$  within the rain.
- Needs reasonably heavy rain within 10-40km from the radar.
- Shows consistency better than 0.5dBZ.
- Able to detect and size a known hardware calibration change.
- If no change to the hardware, the calibration remains CONSTANT.





### **A1. Comparing Radar to Disdrometer**



#### RED IS THE RUNNING MEAN OF 200 SCANS.



### **A2. Comparing Radar to Disdrometer**



#### **A3. Attenuation Along the Ray**







#### WXRCalMon 2021 - Thompson & Illingworth





- It is possible to attempt this calibration without Z<sub>DR</sub>
- $\bullet$  But there is a lot more noise on the  $K_{\text{DP}}$  .
  - e.g. at 45dBZ,  $K_{DP}$  is 2.1, but with a 20% variation that was just 5% when  $Z_{DR}$  was available.
- Would make the calibration much less accurate.



### **A5. Radome/Close Range Attenuation**



