On the use of "Bright Scatterers" for monitoring dual-polarization radars

and their meteorological applications, e.g., Lema melting hail attenuation June 28, 2021 @22:21 UTC Albis wet radome attenuation: May 11 @10:05 UTC

Marco Gabella¹, Marco Boscacci¹

MeteoSwiss, Radar Satellite and Nowcasting, Locarno-Monti, Switzerland

MeteoSwiss guiding principles for radar monitoring is to combine several sources of information

1. NS CAL signals inserted at LNA input (and other REF points) (ERAD14)

- 2. Ext. pass. transponder to measure A, Φ of the Tx radar pulse (ERAD10)
- 3. Sun signals during op. weather scan program for pointing and relative CAL
- 4. Ext. active transp. for measuring RCS, Doppler, polarization (ICEAA2013)
- 5. Dedicated Sun-tracking (max. S/N) for absolute CAL of the Rx chain
- 6. Bright Scatterers, unique for low-sensitivity channel, day/night (ERAD18)

1. Vollbracht et al. (2014) Absolute dual-pol radar CAL.: Temperature dependence and stability with focus on antenna-mounted receivers and noise source-generated reference signal.

- 2. Gabella et al. (2010) An innovative instrumentation for checking EM performances of operational radar.
- 3. Huuskonen et al. JTECH2007, AMT2016; Holleman et al. JTECH2010, ...; Gabella et al. Atmos. 2015
- 4. Gabella et al. (2013) Acceptance tests and monitoring of the next generation dual-pol. weather radar network in Switzerland. Proceed. of the 2013 IEEE Conf. on Electromagnetics in Adv. Appl.

Monitoring dual-pol radar using a Bright Scatterer

Marco Gabella

5. NCAR 80's, Gabella et al. Atmos. 2016, Gabella and Leuenberger, Sensors, 2017

O

6 Gabella M., 2018: On the use of BS for monitoring dual-pol radars. Remote Sensing

Radar cell resolution at the BS site: 83.3m × 314 m × 314 m

BS Height is 90 m

The Cimetta "BS" site in winter: view towards the M. Lema radar site

Radio link propagation: temporary installation of external passive and active calibrators and also ... BS site!

0 km Lema radar site

Cimetta~18 km Bright Scatterer

81 dBZ (r~18 km). RCS ~ 42.2 dBm² P_r ~ -18.1 dBm

수 수 수 수 수

÷

H-, V-pol. Reflectivity

	Hor.	Ver.
10 Log(Mean{z})	81.59dBz	80.43
Median{Z}	81.5 dBz	80.5
Mean{Z}	81.49dBz	80.27
St. Dev.{Z}	±0.90 dBz	±1.21
	10 Log(Mean{z}) Median{Z} Mean{Z} St. Dev.{Z}	Hor. 10 Log(Mean{z}) 81.59dBz Median{Z} 81.5 dBz Mean{Z} 81.49dBz St. Dev.{Z} ±0.90 dBz

Jan. 2015-17: 5 clear-sky days 1440 samples

10 Log(Mean/median) is expected to be: - 1.6 dB for Rayleigh (Uniform Background);

- smaller for Ricean pdf (strong RCS in a UB)

Here it is 0.09 dB for H, -0.07 dB for V

Marco Gabella

10 Log(90%tile / Mean) is 0.9 dB, 1.1 dB (typ. ~3-4 dB)

Monitoring dual-pol radar using a Bright Scatterer

Results: BS spectral/polarim. signatures

- The 2nd Doppler moment (spectrum width) is perfectly stable (31 days).
- The 1st Doppler moment (radial velocity) is very stable (31 days)

5-day 5-min clear-sky Jan. 2015 and 2017 data set (1440 samples)

- The copolar correlation coefficient, ρ_{HV}, is very high and stable: 0.9968±0.0024 (median±spread) and 0.9962±0.0024 (μ ±σ, 5 days)
- The differential phase shift , Ψ_{dp} , is quite stable $\rightarrow \sigma \{\Psi_{dp}\} \sim 4^{\circ}$

Gabella M., 2018: "On the Use of Bright Scatterers for Monitoring Doppler, Dual-Polarization Weather Radars", *Remote Sensing* doi:10.3390/rs10071007

Monitoring dual-pol radar using a Bright Scatterer

Albis *BS polarimetric signatures 2019, 2021, 2020

- The copolar correlation coefficient, ρ_{HV}, is as large
 0.9997±0.0002 (2019),0.9997±0.0001 (2021), 0.9993±0.0028 (2020)
- The differential phase shift , Ψ_{dp} , is stable:

σ{Ψ_{dp}}~**4.1**° (2019), 5.1° (2021), **7.0**° (2020)

*This particular BS ("Hammetschwand") is at Gate402 (~33.6 km) AZ196 4-day clear-sky normal refractivity data set (1152 samples) in **January**

Monitoring dual-pol radar using a Bright Scatterer

Albis 2019 (*BS Gate402 AZ196) Albis 2021

	Hor.	Ver.		Hor.	Ver.
10 Log(Mean{z})	72.07dBz	75.68 dBz	10 Log(Mean{z})	72.22 dBz	75.21
Median{dBZ}	72.0 dBz	75.5 dBZ	Median{dBZ}	72.0 dBz	75.0 dBz
Mean{dBZ}	71.97 dBz	75.62 dBZ	Mean{dBZ}	72.13 dBz	75.15
St. Dev.{dBZ}	±0.9 dBz	±0.7 dBz	St. Dev.{dBZ}	±0.8 dBz	±0.7

4 clear-sky stand. Prop. days in Jan.: 1152 samples

10 Log(Mean/median) is expected to be:

- 1.6 dB for Rayleigh (Uniform Background);
- smaller for Ricean pdf (strong RCS in a Uniform Background)

Here it is 0.07 dB for H, 0.18 dB for V

It is 0.22 dB for H, 0.21 dB for V

The Log(90%tile / Mean) is ~3-4 dB for most of typical GC

Albis *BS and wet-radome attenuation on 11.5.2020

The increase in Noise (median of 36 azimuthal values, 10°-mean) is 1 dB at 10:05 **PIA** is (see above) ~72-61= 11 dB at Hor. and ~75-65= 10 dB at Ver. Pol.

Albis *BS and wet-radome attenuation on 11.5.2020

C

Daily **copolar** correlation coefficient, **ρ**_{HV}, is typically **0.9993±0.0028** ~1 dB increase in Noise (median of 36 azimuthal values, 10°-mean) at 10:05

Lema: Worst/Best daily signatures in Jan. '19 vs '20

C

Worst 2020	Signature, site	Best 2020	Worst 2019	Best 2019
0.9594	E{ρ _{HV} }, CIM	0.9887 <	0.9975	0.9986
76.1°	$\sigma \{ \Psi_{dp} \}, CIM$	28.4° >	4.4 °	2.5°
0.0680	σ{ρ _{HV} }, CIM	0.0310 >	0.0030	0.0007
73.9 dBz	E{Z _H }, CIM	75.3 dBz<	81.5 dBz	82.5 dBz
71.3 dBz	E{Z _V }, CIM	72.2 dBZ<	80.2 dBz	81.5 dBz

Gabella M., 2021: "On the Spectral and Polarimetric Signatures of a Bright Scatterer before and after Hardware Replacement", *Remote Sensing*

Monte Vada', a unique MBS ~21 km west of Lema

U	Jan. 19	Signature, site		Jan. 2020
	0.0007	σ{ρ _{HV} }, CIM		0.0310
	0.0003	$\sigma\{\rho_{HV}\}$, Vada'		0.0013
	2.5°	$\sigma \{ \Psi_{dp} \}, CIM$		28.4°
	2.0°	$\sigma\{\Psi_{dp}\}$, Vada'		7.0 °
	0.9986	E{ρ _{HV} }, CIM		0.9887
	0.9998	E{ρ _{HV} }, Vada'		0.9978
	81.5 dBz	E{Z _V }, CIM		72.2 dBZ
	82.5 dBz	E{Z _H }, CIM		75.3 dBz
	70.3 dBz	E{Z _H }, Vada'		68.0 dBz
	71.4 dBz	E{Z _V }, Vada'		68.5 dBZ

Asko-Iwan Sun-check monitoring implemented at I²+Q² level by Marco B on Monte Lema radar

Monitoring dual-pol radar using a Bright Scatterer & * * * с; с; Aarco Gabella Marco Gabella A A A A A A 分 分 子 ÷ 4 4 4 ት ት ራ ት **MeteoSwiss** ት ት ት ት ት ÷ 15 ት ት ት ት ት ተ ተ ф ф ÷ ÷

÷

÷

÷

÷

ት ት

ۍ ج ÷

÷

÷

ሩን ሩን

÷

ት ት

÷

÷

÷

\$ ት ት

Monte Vada', a unique MBS ~21 km west of Lema

U

Jan. 19	Signature, site	13.4.2021	14.4.2021	Best Jan. 2020
0.0007	σ{ρ _{HV} }, CIM	0.0035	0.0031	0.0310
0.0003	σ{ρ _{HV} }, Vada'	0.0008	0.0011	0.0013
2 5°	σ{Ψ _{dp} }, CIM	12.1°	6.5°	28.4°
2.0°	$\sigma{\{\Psi_{dp}\}}, Vada'$	7.5°	6.1°	7.0 °
0.9986	E{ρ _{HV} }, CIM	0.9959	0.9966	0.9887
0.9998	E{ρ _{HV} }, Vada'	0.9992	0.9981	0.9978
81.5 dBz	E{Z _V }, CIM	76.5±1.8 dBZ	76.0±2.2 dBz	72.2 dBZ
82.5 dBz	E{Z _H }, CIM	77.8±2.0 dBz	78.5±1.1 dBz	75.3 dBz
70.3 dBz	E{Z _H }, Vada'	68.4±0.5 dBz	69.0±0.8 dBz	68.0 dBz
71.4 dBz	E{Z _V }, Vada'	71.1±0.8 dBz	70.2±0.6 dBz	68.5 dBZ

2 "good" days in spring 2021: cs and light rain

Monitoring dual-pol radar using a Bright Scatterer & Marco Gabella **MeteoSwiss** ት ት ትትትት

수수

12-hour Vada' radar Reflectivity evolution on June 28, 2021

vada_az270_ZH, Lema / vada_az270_ZV, Lema

Lema A-scope

÷

PIA at 22:21 UTC is 69.0-36.5 = 32.5 dB

Monitoring dual-pol radar using a Bright Scatter

MBS as a Surface Reference target for estimating Path Integral Attenuation

MeteoSwiss

E{Z_H}=69.0±0.8 dBZ M. Vada'

rer

Marco Gabella

Lema A-scope: Z_H at 22:11:12 UTC, 22:16:11 UTC, at 22:21:11 UTC

MeteoSwiss

Monitoring dual-pol radar using a Bright Scatte

Marco Gabella

er

Lema A-scope: Ψ_{dp} at 22:11:12 UTC, 22:16:11 UTC, at 22:21:11 UTC

Lema A-scope: Ψ_{dp}

June 28, 2021. +1.0deg ELEV. Three consecutive 5-min sweeps; 2 km median filter

Summary, conclusions and open points

- Worthwhile to identify "BS": → near-range, large RCS, perpendicularly hit by the main lobe beam axis, which is at (almost) MAX Gain
- The unique backscattered signals by Bright Scatters can be used to monitor and quality-check the low sensitivity channel of operational dual-polarization weather radars
- The BS (and the MBS in case of Lema) looks promising also as far as meteorological applications are concerned: e.g, PIA retrieval with high angular and temporal resolution
- Why do the BS polarimetric signatures depend on the CU?
 --> the PHASE of the low-sensitivity channel LNAs??

Monitoring dual-pol radar using a Bright Scatter

 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *</t

Lema A-scope: Z_{dr}

June 28, 2021. Lowest Elev. AZ270. Three consecutive 5-min observations starting at 22:15 UTC (vol. time stamp)

June 28, 2021. Lowest Elev. AZ270. Three consecutive 5-min observations starting at 22:15 UTC

÷

÷

\$

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

MeteoSvizzera

Via ai Monti 146 CH-6605 Locarno-Monti www.meteosvizzera.ch

MeteoSwiss

Operation Center 1 CH-8058 Zurich-Airport T +41 58 460 91 11 www.meteoswiss.ch

MétéoSuisse

7bis, av. de la Paix CH-1211 Genève 2 T +41 58 460 98 88 www.meteosuisse.ch

MétéoSuisse

Chemin de l'Aérologie CH-1530 Payerne T +41 58 460 94 44 www.meteosuisse.ch

