Measurements of the radar differential phases upon transmission and reception on WSR-88Ds

3rd Weather Radar Calibration Workshop

Valery Melnikov

Cooperative Institute for Severe and High Impact Weather Research and Operations (CIWRO)

and National Severe Storms Laboratory (NSSL)

Differential phase in transmit ψt

 $\psi t = 0 \deg$

 ψ t = 90 deg

The differential phase ψ t between incident orthogonally polarized waves

impacts the radar variables. Example 1: wet graupel

WIPL model of a natural graupel

Wet graupel. El= 0.5° Water thickness = 0.2 mm $= 0^{\circ}$ 46.2 -1.5 46 -2 20⁰ 30⁰ 45.8 -2.5 (Zgp) Z 명 ZDR, -3 45.4 -3.5 45.2 45 -4.5 50 100 150 0 50 100 150 0 Ψ_{t} (deg) Ψ_{t} (deg) $= 0^{\circ}$ 0.5 0.99 0 30° 0.98 -0.5 deg _≧ 0.97 Ś 0.96 -1.5 0.95 -2 0.94 -2.5 100 150 0 0 50 50 100 150 Ψ_{t} (deg) Ψ_{+} (deg)

 σ_{θ} is the standard deviation in the canting angle, it is a measure

of the tumbling intensity. θ is the canting angle of a scatterer

Reflectivity Z and ZDR do not depend on ψt . The correlation coefficient p_{hv} and phase upon scattering δ depend on ψt . Tumbling affects ZDR, p_{hv} , and δ .

The differential phase between incident orthogonally polarized waves impacts the radar variables σ_{θ} is the standard deviation in the canting angle Example 2: Hail

Reflectivity Z and ZDR do not depend on ψt . The correlation coefficient ρ_{hv} and phase upon scattering δ depend on ψt . Tumbling affects ZDR, ρ_{hv} , and δ .

The differential phase between incident orthogonally polarized waves impacts the radar variables

Example 3: Ice clouds

Elevation dependence of ρ_{hv} and δ at various ψ_t .

Ice plates with the axis ratio 0.3

Thin ice plates

The differential phase between incident orthogonally polarized waves impacts the radar variables

Example 4: X-band observations (Norman, OK).

Measured differential phase can drop in areas of enhanced ZDR

To quantitively interpret the radar variables measured from ice particles, ψ t should be known (measured).

Measurements of the radar differential phases upon transmission ψ_t and reception ψ_r on WSR-88Ds

WSR-88D (Weather Surveillance Radar – Doppler) is the S band radar in the USA. The network contains 160+ systems.

A method to measure the differential phase upon transmission

Transmitting horn antenna

(a) (b) Vert Ev (d) Hor Eh

1. ψ sys = ψ t + ψ r, ψ sys is routinely measured in a close-to-radar edge of precipitation

2. If ψ r can be measured, then $\psi t = \psi sys - \psi r$,

 ψ r can be measured using an external transmitting horn directed to a radar antenna. The differential phase of transmitted wave is zero, therefore, the received phase is ψr .

The red arrow shows the polarization plane of transmitted wave

Measurements of the receive phase

The radar antenna scans around the direction to the transmitted horn. 2D images of the horn's signal. The black circle shows the 1 deg beamwidth of WSR-88D KOUN.

Time series of ZDR and ψr of the horn's signal

Measurements of ψ_{sys} and obtaining ψ_t

Histogram of ψ sys from precipitation. Ψ sys = 171.5 deg

176

178

 $\psi t = \psi sys - \psi r = 171.5 - 59.1 = 112.4 deg$. The phase of transmitted horizontally polarized wave is behind the phase of vertically polarized wave (S band KOUN).

Conclusions

• The differential phase in transmit ψ_t impacts the correlation coefficient ρ_{hv} and phase upon

scattering δ . This effect should be taking into considerations in hail detection and sizing as well

as in the interpretation of measurements in ice clouds.

• The phase ψt on the WSR-88D KOUN, KIWA, and KLWX are 112.4°, 50°, and 10°, respectively.

• At shorter wavelengths, the impacts of ψt are expected to be stronger than those at S band.