The characteristics of observation using solid-state dual-polarization radar

SUMIDA Yasuhiko, KAJIWARA Yusuke, YAMAUCHI Hiroshi and OKAMOTO Soshi Observation Division, Atmosphere and Ocean Department, JMA

> 3rd WXRCalMon 18th Nov. 2021

- 1. History of SSPA weather radar in JMA
- 2. Characteristics of observation using SSPA radar
- 3. Spectrum sharing between C-band radar and RLAN in Japan

1

4. Summary

) Japan Meteorological Agency

1. History of SSPA dual-pol. weather radar in Japan

History of solid-state dual-pol. radar in Japan Total 14 C-band radars as SSPA dual-pol. (as of 2021 Nov. JMA) 2020 Start of operational radar update to SSPA dual-pol. (JMA, 2020) Start of TDWR update to SSPA dual-pol. (JMA, 2016) Start of installation of C-band SSPA dual-pol. radar (MLIT, 2012)* 2010 Start of installation of X-band SSPA dual-pol. radar (MLIT, 2010)*

Development of C-band SSPA radar (MRI, 2008)

2000

*The early models introduced Klystron, and the current radars develop nationalwide with SSPA.

動 Japan Meteorological Agency

C-band SSPA dual-pol. radar in JMA

National-wide	e weather radar (2020~)	
Transmitting frequency	5350.0 MHz (Osaka, Fukui) 5357.5 MHz (Tokyo) 5360.0 MHz (Hiroshima, Nagoya) 5365.0 MHz (Sendai, Fukuoka)	
Antenna	Parabola, Diameter 4.3 m	
Beam width	0.95 degree	
Transmitter	Gallium / Nitride HEMT	
Peak transmitting power	Horizontal 3 or 4 kW Vertical 3 or 4 kW	
Pulse width	Short Pulse: 1 μsec Long Pulse: 30 – 200 μsec	

TE	TDWR (2016~)			
Transmitting frequency	5330 MHz (Haneda) 5335 MHz (Narita, Fukuoka) 5340 MHz (New-Chitose) 5350 MHz (Chubu) 5360 MHz (Kansai) 5365 MHz (Naha)			
Antenna	Parabola, Diameter 7 m			
Beam width	0.7 degree			
Transmitter	Gallium / Nitride HEMT			
Peak transmitting power	Horizontal 5 kW Vertical 5 kW			
Pulse width	Short Pulse: 1 μsec Long Pulse: 30 or 64 μsec			

1. History of SSPA weather radar in JMA

2. Characteristics of observation using SSPA radar

3. Spectrum sharing between C-band radar and RLAN in Japan

4. Summary

) Japan Meteorological Agency

Improvement of sensitivity around radar site

- > SSPA radar has <u>low sensitivity area within the short-pulse range</u> where pulse compression is not available. \rightarrow No echo in light rain
- The adaptation of various countermeasures (e.g. NLFM, combination of various width of long pulses) lead to reliably detect weak echoes in vicinity.

Improvement of sensitivity around radar site

- Early SSPA TDWR adapted <u>τ=64µs</u>, PRF:1040:832(5:4), LFM. → low receiving sensitivity area around radar site
- Late-model SSPA TDWR adapted τ=30, PRF:1116:930(6:5), NLFM*. → Improved receiving sensitivity → About 7dB improved at the boundary between short/long pulse.

*including receiving loss improvement (about 1.5 dB)

 <u>National-wide weather radar</u> <u>adapted NLFM</u>, and <u>pulse width and</u> <u>PRF were individually determined in</u> response to intensity and velocity observation.

 \rightarrow Achieved the same sensitivity of observation as before.

Case study (Low-level wind shear detection)

Suppression of range sidelobe

• Moreover, NLFM improved range resolution (compressed).

Improvement of resolution

High resolution image Azimuth resolution: $0.7^{\circ} \Rightarrow 0.35^{\circ}$ (adaptation of super-resolution) Range resolution: 250m⇒125m (averaging 2 bins to 250m resolution in order to improve observation error) These make it possible to clearly distinguish far-off echoes! Conventional image High resolution image (Azimuth resolution) 0.7° :about 2km@160km 0.35° :about 1km@160km 52 51 50 50 49 49 47 47 45 42 40 37 33 28 28 42 40 37 33 28 23 10 km 10 km 2020/04/18 18:00 仰角別反射強度0.3deg 20/04/18 18:00 反射強度(二重偏波)0.3dex

Japan Meteorological Agency

Calibration technique between short/long pulse

 In the WXRCalMon in 2019, we introduced the method of calibration for ΦDP and Zdr of short and long pulse in JMA.

Concepts; "inner to outer"

- (short pulse) calibration by Bird-bath scan first.
 - 1
- (long pulse) calibration gap between short and long pulse region by overlapping region analysis.
- \rightarrow Prepared calibration monitoring tool for gap between long and short pulse.

Calibration and monitoring experience with JMA's SSPA dual-pol. radars Hotta et al., WXRCalMon 2019

Calibration technique between short/long pulse

SSPA radar case study(improvement of weak echo)

Mitigation of cutting off Z process

- Z ≦15.3dBZ(0.33mm/h) was not used until updating to dual-pol radar for sea clutter and clear air echo.
- $Z \ge 5 \text{ dBZ}(0.10 \text{mm/h})$ is used for Removal of sea clutter and clear air echo using dual-pol variables.

SSPA radar case study (Removal of non-preciepitation echoes)

- SSPA radar can discriminate non-precipitation echoes (sea clutter, clear air echoes, chaffs…) by using dual-pol. parameters.
- Precipitation intensity and velocity observation has improved due to quality control.

SSPA radar case study (Range doubler)

Extension of detection area

- Doppler velocity in the area of range doubler (dual-PRF 888/740Hz) can be observed almost the same as middle PRF observation (540Hz).
- Restoration error of reflectivity is less than 1dB, rejection ratio of primary echo is less than 1dB.

- 1. History of SSPA weather radar in JMA
- 2. Characteristics of observation using SSPA radar
- 3. Spectrum sharing between C-band radar and RLAN in Japan

4. Summary

Trigger to introduce SSPA transmitter in Japan

- Rapid increase in usage of WiFi.
- Meteorological radars are requested to reduce band width.
- Electron tube technology cannot meet the request.

Technical requirements (DFS of RLAN in the 5.3-GHz bands)

Spectrum Band	2.4 GHz	5GHz		
		5.2GHz	5.3GHz	5.6GHz
Outdoor use	0	O*conditional	×	ο

- Spectrum sharing in the 5-GHz bands between weather radar and RLAN in Japan.
- Prohibition of outdoor use and requirement of DFS for frequency protection of weather radar.
- With the spread of SSPA radar, <u>DFS</u> <u>technical standards have been</u> <u>established</u> to address pulse patterns using chirp modulation.
- 🔊 Japan Meteorological Agency

- 1. History of SSPA weather radar in JMA
- 2. Characteristics of observation using SSPA radar
- 3. Spectrum sharing between C-band radar and RLAN in Japan

4. Summary

Summary

- JMA has updated 14 of its 29 C-band weather radars to SSPA dual-polarization version.
 - More and more radars are planed to be renewed to SSPA radars in the next few years.
- SSPA radar performs as well as conventional radar with electron tube.
 - By using various width of long pulse and PRF, SSPA radar can make equivalent observations.
 - Moreover, SSPA radar improves observation capability (resolution, low sensitivity, quality control).
 - Constant calibrations is required to maintain performance.

Thank you for your attention !

JMA's mascot, "Harerun"

🗑 Japan Meteorological Agency