3rd Calibration and Monitoring Workshop, Toulouse, France, 17-19 Nov 2021 EVALUATION OF DWD RADAR CALIBRATION BASED ON COLLOCATED SPECTRAL POLARIMETRIC OBSERVATIONS FROM W-BAND CLOUD RADAR

Alexander Myagkov, Thomas Rose, RPG, Meckenheim, Germany Michael Frech, Mathias Gergely, DWD, Hohenpeißenberg, Germany

ROHDE&SCHWARZ

Make ideas real

CONVENTIONAL DISDROMETER-BASED CALIBRATION

High short-term uncertainty due to sampling effects:

- Spatial and temporal DSD variability
- Different sampling volumes

Freq: C-band (5.6 GHz) Min. Range: 1 km Res. Vol: **15000 m³**

Surface Samp. Area: ~50cm²

CONTRIBUTION OF LARGE DROPS TO C-BAND REFLECTIVITY

Normalized gamma, NL = 8000, D0 = 1.1 mm, RR = 3 mm/h, Ze ~ 30 dBZ MU=0 MU=2 MU=5 **1 dB** 0 2.5 0.5 1.5 2 3.5 0 3 4 Equivolumetric drop diameter [mm]

CONTRIBUTION OF LARGE DROPS TO C-BAND REFLECTIVITY

1 dB accuracy relies on a few drops per minute observed by a typical disdrometer (50 cm²) 0.5 dB accuracy 0.1 - 1 drop per minute Coarse size-velocity grid

CONVENTIONAL DISDROMETER-BASED CALIBRATION

Freq: C-band (5.6 GHz) Min. Range: 1 km Res. Vol: **15000 m³**

Surface Samp. Area: ~**50cm²** High short-term uncertainty due to:

- Sampling effects
- Spatial and temporal DSD variability

In order to reduce the uncertainty

> 20 h averaging of vertical observations in stratiform rain are needed (Frech et al. 2017)

Is there a reliable reference for:

- shorter time scales
- applicable to low elevations

INTERMEDIATE REFERENCE: MM-WAVELENGTH RADAR

Sampling effects are of less importance due to:

- 1. Smaller distance in between
- 2. Smaller resolution volume relative to a weather radar
- 3. Longer averaging and high SNR (up to 70 dB even in low intensity rain)

Freq: W-band (94 GHz) Min. Range: 250 m Res. Vol: 140 m³

Surface Samp. Area: ~50 cm²

LARGE DROPS AT 94 GHZ

LARGE DROPS AT 94 GHZ

Disdrometer observations are much more representative for W-band

INTERMEDIATE REFERENCE: MM-WAVELENGTH RADAR

Freq: C-band (5.6 GHz) Min. Range: 1 km Res. Vol: 15000 m³

Freq: W-band (94 GHz) Min. Range: 250 m Res. Vol: 140 m³

- Accurate calibration (Myagkov et al, 2020)
- More representative observations than a disdrometer (large particles are detected)
- Scanning unit. Profiles from operational weather radar scans can be used.
- A number of range bins can be compared

Problem: How to derive the reference 5.6-GHz reflectivity for low elevation from the cloud radar?

DSD RETRIEVAL USING DOPPLER SPECTRA

DSD RETRIEVAL USING DOPPLER SPECTRA

Uncertainties related to air motions (up/down + turbulence broadening) Is this also applicable to slanted observations?

SLANT OBSERVATIONS

Precise correction for air motions is needed

POLARIMETRIC OSCILLATIONS

Oscillations can be used for mitigation of air motions

MODEL FIT

Variational retrieval similar to Tridon and Battaglia, 2015 (dual frequency spectra)

- Shift due to horizontal wind
- Turbulence
- Calibration of polarimetric variables
- Attenuation by liquid
- Attenuation by gas
- Air density effects
- Error covariance matrix (Myagkov and Ori, 2021, under revision in AMTD)

Derived profiles of DSD can be used to derive expected profiles of C-band reflectivity

PROOF-OF-CONCEPT CAMPAIGN HOHENPEIßENBERG, GERMANY, SUMMER 2021

Cloud radar:

- Calibrated at RPG as described in Myagkov et al. 2020
- Rain mitigation system to keep cloud radar radomes dry
- Continuous observations at 30 deg elevation
- > 5.5 s sampling, 30 m resolution
- Accurate leveling and pointing

Weather radar:

- Every hour the same direction for 5 min
- > 25 m resolution, ~0.2 s sampling

Case study 22 Aug 2021

- ➢ 30 deg elevation
- 16:30-16:35 C-band looked to the same direction
- Stratiform precipitation
- Low turbulence
- Rain rate 2-10 mm/h
- ➢ W-band Zh ~16-18 dBZ
- Melting layer at 2.3 km
- ZDR oscillation below 1.3 km

Single sample (~0.2 s) comparison Total 5 min (Radar – Cloud radar)

SUMMARY AND OUTLOOK

- Novel approach to evaluate weather radar reflectivity using a cloud radar as an intermediate reference
- Applicable to a low number of samples at elevations from 20 to 45 deg
- Reachable accuracy within ±1 dB from a few radar samples
- More data to be analyzed

3rd Calibration and Monitoring Workshop, Toulouse, France, 17-19 Nov 2021

THANKS FOR YOUR ATTENTION

Contacts: alexander.myagkov@radiometer-physics.de

References:

- Evaluation of the reflectivity calibration of W-band radars based on observations in rain, Myagkov et al, 2020, AMT
- Analytic characterization of random errors in spectral dual-polarized cloud radar observations, Myagkov and Ori, 2021, AMTD (under revision)
- Monitoring the Absolute Calibration of a Polarimetric Weather Radar, Frech et al, 2017, JTECH
- Dual-frequency radar Doppler spectral retrieval of rain drop size distributions and entangled dynamics variables, Tridon and Battaglia, 2015, JGR

ROHDE&SCHWARZ

Make ideas real

26 Sep 2021

CLOUD RADAR EVALUATION DURING THE CAMPAIGN

Polarimetric oscillations for a water spheroid

DSD VARIATIONAL RETRIEVAL

COST = $(\mathbf{y} - \mathbf{F}[\mathbf{x}])^{\mathsf{T}} \mathbf{E}^{-1} (\mathbf{y} - \mathbf{F}[\mathbf{x}])$

State vector **x**:

- Number of drops for each spectral bin
- Spectral shift due to air motions
- Spectral broadening due to turbulence

Forward model **F**:

- Scattering model
- Size-shape-velocity relations
- Air motions and turbulence
- Signal-to-noise ratio

Observation vector y:

- Reflectivity spectrum H
- Reflectivity spectrum V
- Real covariance spectrum
- Imaginary covariance spectrum

Observation error covariance matrix E:

• Calculated as shown in Myagkov and Ori, 2021