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INTRODUCTION

On climatic scales: Basin-scale impact of turbulent mixing at the SoG

Figs 15 and 16 Harzallah et al. 2014
Zonal section of temperature and salinity anomalies induced
by tidal mixing at the SoG (1998-2007 average)
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INTRODUCTION

Scientific question: Understanding the role of the SoG for the Mediterranean climate

* On climatic scale, the SoG representation induces basin-scale modifications of the
Mediterranean surface. However, the consequences on the ocean-atmosphere exchanges are
poorly known.



INTRODUCTION

Scientific question: Understanding the role of the SoG for the Mediterranean climate

* On climatic scale, the SoG representation induces basin-scale modifications of the
Mediterranean surface. However, the consequences on the ocean-atmosphere exchanges are
poorly known.

& What role does the SoG representation play for the Mediterranean climate?
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|. METHODS: A COUPLED REGIONAL CLIMATE MODEL OF THE
MEDITERRANEAN REGION

CNRM-RCSM®6 coupled regional climate system model
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CNRM-RCSM®6 coupled regional climate system model

« Atmosphere: ALADIN coupled with interactive aerosols scheme TACTIC.
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|. METHODS: A COUPLED REGIONAL CLIMATE MODEL OF THE
MEDITERRANEAN REGION

CNRM-RCSM®6 coupled regional climate system model

 Atmosphere: ALADIN coupled with interactive aerosols scheme TACTIC.
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CNRM-RCSM®6 coupled regional climate system model

 Atmosphere: ALADIN coupled with interactive aerosols scheme TACTIC.

« Continental surfaces: SURFEX
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CNRM-RCSM®6 coupled regional climate system model

 Atmosphere: ALADIN coupled with interactive aerosols scheme TACTIC.

« Continental surfaces: SURFEX

+ Rivers: CTRIP ‘“‘wf'
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« Ocean: NEMO model in regional configuration.
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|. METHODS: A COUPLED REGIONAL CLIMATE MODEL OF THE
MEDITERRANEAN REGION

NEMOMEDGIB regional configuration NEMOMEDGIB (1/12°) bathymetry
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[l. OCEANIC ADJUSTMENT TO TIDAL MIXING AT THE S0G

Modified seasonal cycle of surface temperature over the western Mediterranean

« Warm bias in summer with respect to satellite measurements. Moderate improvement in T HR

* The cooling effect of tidal forcing and AGRIF zoom at the SoG is maximal in summer.
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[l. OCEANIC ADJUSTMENT TO TIDAL MIXING AT THE S0G

JJA sea surface temperature
Lower panel: Tidal and AGRIF zoom anomalies
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JJA sea surface temperature
Lower panel: Tidal and AGRIF zoom anomalies

Cooling of the summer surface temperaturein T HR 44~ W/ o -

 The cooling is maximal in the Alboran Sea where it
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Cooling of the summer surface temperature in T HR

 The cooling is maximal in the Alboran Sea where it
reaches up to —1.5°C.

* Inthe Balearic Sea: local hot anomaly.
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JJA sea surface temperature
Lower panel: Tidal and AGRIF zoom anomalies

Cooling of the summer surface temperature in T HR

 The cooling is maximal in the Alboran Sea where it
reaches up to —1.5°C.

* Inthe Balearic Sea: local hot anomaly.

« The bias with respect to satellite measurements
reduces by 15% in T HR.
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JJA sea surface temperature
Lower panel: Tidal and AGRIF zoom anomalies

Cooling of the summer surface temperature in T HR

 The cooling is maximal in the Alboran Sea where it
reaches up to —1.5°C.

* Inthe Balearic Sea: local hot anomaly.
« The bias with respect to satellite measurements

reduces by 15% in T HR.

& What are the mechanisms driving these
anomalies ?
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JJA sea surface temperature
Lower panel: Tidal and AGRIF zoom anomalies
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Zonal section of temperature (shades) and currents at the SoG
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[l. OCEANIC ADJUSTMENT TO TIDAL MIXING AT THE S0G

Zonal section of temperature (shades) and currents at the SoG
Lower panel: Tidal and AGRIF zoom anomalies
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Zonal section of temperature (shades) and currents at the SoG
Lower panel: Tidal and AGRIF zoom anomalies
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Zonal section of temperature (shades) and currents at the SoG
Lower panel: Tidal and AGRIF zoom anomalies
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Zonal section of temperature (shades) and currents at the SoG
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[l. OCEANIC ADJUSTMENT TO TIDAL MIXING AT THE S0G

Tidal mixing at the SoG

Tide-induced vertical recirculation of the outflowing
Mediterranean waters.

The upwelled water masses are assimilated by
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Instabilities.
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[l. OCEANIC ADJUSTMENT TO TIDAL MIXING AT THE S0G

Dynamic sea level (shades) and near surface velocity.
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[l. OCEANIC ADJUSTMENT TO TIDAL MIXING AT THE S0G

Dynamic sea level (shades) and near surface velocity.
Bottom panel: Tidal and AGRIF zoom anomalies
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[l. OCEANIC ADJUSTMENT TO TIDAL MIXING AT THE S0G

Dynamic sea level (shades) and near surface velocity.

Modified circulation in the Western Mediterranean

« The anticyclonic gyre at the entrance of the
Mediterranean Sea is enhanced and displaced
eastward.
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[l. OCEANIC ADJUSTMENT TO TIDAL MIXING AT THE S0G

Dynamic sea level (shades) and near surface velocity.
Bottom panel: Tidal and AGRIF zoom anomalies
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[l. OCEANIC ADJUSTMENT TO TIDAL MIXING AT THE S0G

Dynamic sea level (shades) and near surface velocity.
Bottom panel: Tidal and AGRIF zoom anomalies
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l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

JJA sea surface temperature, sensible heat flux, and latent heat flux
Surface turbulent fluxes Bottom panel: Tidal and AGRIF zoom anomalies
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l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

Surface turbulent fluxes
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l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

JJA sea surface temperature, sensible heat flux, and latent heat flux
Surface turbulent fluxes Bottom panel: Tidal and AGRIF zoom anomalies

« Tidal cooling of the sea surface 44N
results in a reduction of ocean
heat loss, mainly through the
decrease of latent heat flux.
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« Tidal cooling of the sea surface 44N
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results in a reduction of ocean
heat loss, mainly through the
decrease of latent heat flux.
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l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

JJA sea surface temperature, near-surface air temperature, and specific humidity
Atmospherlc Surface propertles Bottom panel: Tidal and AGRIF zoom anomalies
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l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

JJA sea surface temperature, near-surface air temperature, and specific humidity
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l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

JJA sea surface temperature, near-surface air temperature, and specific humidity
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. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

Atmospheric surface properties

 Qver the sea, surface
temperature mainly decreases.
Over land, the anomalies are of
lower amplitude.

« Specific humidity decreases
over both the western
Mediterranean Basin and coast.

NT LR (ref)

T HR - ref

JJA sea surface temperature, near-surface air temperature, and specific humidity
Bottom panel: Tidal and AGRIF zoom anomalies
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l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

JJA relative humidity, precipitations, and cloud fraction

Precu:nta“ons and cloud fraction Bottom panel: Tidal and AGRIF zoom anomalies
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l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

Precipitations and cloud fraction
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Bottom panel: Tidal and AGRIF zoom anomalies
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l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

JJA relative humidity, precipitations, and cloud fraction
Bottom panel: Tidal and AGRIF zoom anomalies

Precipitations and cloud fraction

* Relative humidity decreases
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l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

Precipitations and cloud fraction

Relative humidity decreases
over the land, but increases
over the ocean due to the
decrease of saturation humidity.

Most of precipitation anomalies
are not statistically
significant. However, the mean
reduction of ~ 1% over the
western Mediterranean region
IS.

NT LR (ref)
NN
<
=

36°N

44°N |~

T HR - ref
N
=
pd

JJA relative humidity, precipitations, and cloud fraction
Bottom panel: Tidal and AGRIF zoom anomalies

A= —-0.0080 o
H#p=6.41-10"'1 e

*

:\;"%@" 2
PR e

0° 5°E

-0.12 -0.06 0.00 0.06 0.12
precip [mm.j 1]

5°W

0° 5°E
-08 -04 0.0

cldfrac [%]

0.4



l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

JJA relative humidity, precipitations, and cloud fraction
Bottom panel: Tidal and AGRIF zoom anomalies

Precipitations and cloud fraction

« Cloud fraction moderately
diminishes over most of the
Western Mediterranean.
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Precipitations and cloud fraction

Cloud fraction moderately
diminishes over most of the
Western Mediterranean.

In the Alboran Sea and at the
north of Morocco, it locally
Increases because of the
saturating humidify reduction.
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l1l. IMPACTS ON THE OCEAN-ATMOSPHERE INTERFACE

JJA relative humidity, precipitations, and cloud fraction
Bottom panel: Tidal and AGRIF zoom anomalies
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CONCLUSIONS

A new configuration of regional coupled model has been developed, including high-resolution
and tidal representation of the SoG, and allowing to perform simulations on climatic scales.
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DISCUSSIONS

This study highlights the influence of ocean vertical mixing on the surface atmosphere, which
participates to the summer drying of the surface atmosphere.
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which their effects may be intensified due to the projected increase of surface ocean
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CONCLUSIONS / DISCUSSIONS

A new configuration of regional coupled model has been developed, including high-resolution and tidal
representation of the SoG, and allowing to perform simulations on climatic scales.

The representation of tidal mixing at the SoG results in a cooling of Western Mediterranean Sea surface
temperature, in better agreement with observations and literature.

The atmospheric surface above the ocean is cooled and dried. As a result, precipitation and cloud fraction
moderately decrease.

Land impacts are of lower intensity, but they remain significative in island and coastal areas.

This study highlights the influence of ocean vertical mixing on the surface atmosphere, which participates to the
summer drying of the surface atmosphere.

The underlined mechanisms should be studied in the context of global warming simulations, in which their
effects may be intensified due to the projected increase of surface ocean stratification.
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