Portage de Méso-NH sur Super-Calculateur Hybride Avec OpenACC Sur GPU NVIDIA et AMD

J.Escobar(1),P.Wautelet(1),N.Alaoui(2),P.Vezolle(3),P.E.Bernard(3);
(1) LAERO , (2) Eolen , (3) HPE

Le Modèle de Recherche Méso-NH

- Un développement conjoint CNRS/ Météo-France
 - Modèle Non Hydrostatique pour traiter une vaste gamme de phénomènes atmosphériques de 1000 km au mètre
 - jeu complet de paramétrisations physiques, dont nuages, turbulence et rayonnement
 - couplé au modèle de surface SURFEX
 - configuration en cas idéalisés 1D, 2D, 3D et cas réel avec capacité d'imbrication pour descente en échelle
 - chimie et aérosols en phase gazeuse et aqueuse
 - bilan, traceurs, opérateurs d'observation (sat, radar, GPS)
- Parallélisation
 - F90 + MPI = 1 million de lignes de codes
 - 100% vectoriel <=> ARRAY SYNTAX (presque pas de boucle)
 - Décomposition de Domaine 2D X*Y, Z complet
 - Point Difficile, Solveur de Pression <=> Équation Elliptique à inverser
 - Pré-conditionneur « FFT3D » + Méthode Gradient Conjugué
- WEB: http://mesonh.aero.obs-mip.fr (/mesonh55/Download)
 - Version courante sous git/lfs
 - PACK-MNH-V5-5-0 : Licence OpenSource : CECIL-C

Toute version reproductible au bit près en parallèle

Architecture Massivement Parallèle

CLASSIQUE <=> HIER

- ANL(USA)/MIRA/IBM-BG/Q
 - 49 152 nœuds * 16 cores

= 10 PFLOPS

HYBRIDE <=> AUJOURD'HUI

- RIKEN(JAPIN)/FUGAKU :
 - 158 976 nœuds * A64FX
- ORNL(USA)/SUMMIT/IBM:
 - 4 608 nœuds * 6 NVIDIA/V100
- NSCC(CH)/SUNWAY/NRCPC:
 - 40 960 nœuds * SW26010

= 537 PFLOPS

= 200 PFLOPS

= 125 PFLOPS

EXASCALE <=> AVANT-HIER ;-)

- ORNL(USA) FRONTIER
 - ~10 000 nœuds Cpu AMD + GPU AMD Instinct= 1.5 EF (No1 T500)
- CSC(Finland/EuroHPC JU) LUMI-G
 - 2560 nœuds Cpu AMD + GPU AMD Instinct = 0.5 EF (No3 T500)
- CINES(France/GENCI) ADASTRA
 - 360 nœuds Cpu AMD + GPU AMD Instinct = 0.07 EF (No10 T500)

EXASCALE <=> DEMAIN ?

- USA AURORA = 1EF : ~10 000 nœuds Cpu Intel + Xeon-PHI → GPU Intel Xe Architecture
- EUROPE MONT-BLANC: Cpu ARM + Accélérateur ARM+RISC-V(+FPGA)

Méso-NH + GPU/Accélérateur La seule voie pour l'ExaFlops ...

- Quelle Architecture / Compilateur / Langage ?

NVIDIA: CUDA avec OpenACC

AMD: ROCM + OpenMP / Cray + OpenACC

Intel: OneAPI + OpenMP

ARM: ???

- Pour Méso-NH, portage avec OpenACC ...
 - commencé dès 2010 sur PC + GPU Nvidia et cluster Labo NUWA avec les premières versions du compilateur PGI+ACC et de CUDA .
 - poursuivi sur différents prototypes GENCI dont OUESSANT/IDRIS Cpu IBM-PW8 + GPU Nvidia P100 + lien nvlink rapide CPU-GPU
 - et puis sur premier Super-Calculateur Hybride : Jean-Zay à l'IDRIS
 Cpu Intel + GPU Nvidia V100
 - et aussi au travers de PRACE sur Calculateur Européen : MARCONO100
 Cpu IBM-PW9 + GPU Nvidia V100 + lien nvlink rapide CPU-GPU

Méso-NH + GPU(NVIDIA): OpenACC

- Parallélisation facile
 - l' « array syntax » parallélise & vectorise toujours, commentaire dans le code

!\$acc kernels

A = B + C

!\$acc end kernels

- ... mais optimisation difficile

<=> éviter/gérer/optimiser les copies de données CPU ↔ GPU ↔ Réseau

!\$acc data present/copy/update(in/out)

. . . .

!\$acc end data

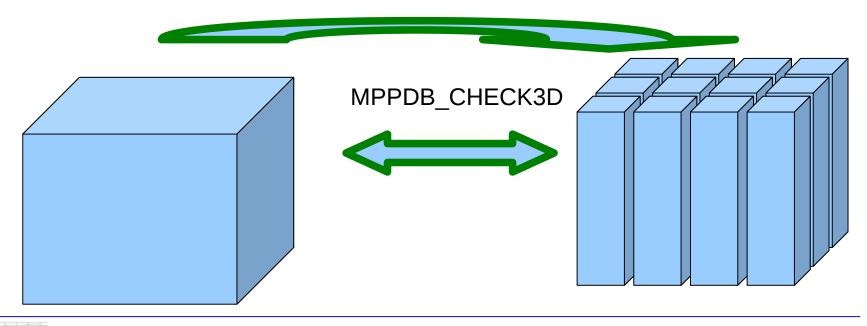
- Beaucoup, beaucoup de BUGs de compilateur (PGI/NVIDIA)
- Restructuration du code pour l'optimisation/reproductibilité des calculs :
 - Pas d'appel de fonctions retournant des tableaux (réécriture en subroutine + tableau temporaire)
 - Pas de tableaux automatiques, sinon on passe son temps à allouer/désallouer des tableaux <=> remplacé par des « piles de tableaux » pré-alloués + pointer fortran
 - Optimisation échanges de halos, GPU-direct + communications asynchrones
 - Recodage des fonctions « log;exp,... » pour Bit-reproductibilité
 - Problème Bug/Perf compilateur , certains « array syntax/where » → DO CONCURRENT

Méso-NH + GPU(NVIDIA) : OpenACC

- Qu'est-ce qui a été porté avec OpenACC?
 - seulement les routines les plus consommatrice
 5 % du code , mais 90 % a 95 % de temps de calcul
- Dynamique
 - Schéma d'advection PPM, pour les variables météorologiques (eau, glace, etc ...)
 - Schéma d'advection WENO, pour les variables de vents (UVW)
 - Solveur de pression : pour les GPU passage FFT 3D → MultiGrille (cf slide suivante)
- Physique
 - Schéma de Turbulence 3D (TKE)
 - Schéma de Nuages (Ice3)
- Méso-NH est bit-reproductible entre exécution sur multi-CPU et multi-GPU , comment fait-on ?
 - Développement/Utilisation de 2 « outils » intégrés dans le code
 - Utilisation d'une Librairie « Bit-reproductibilité » CPU/GPU(OpenACC) pour des fonctions « log;exp,... »
 C++ + OpenACC + interface F90 ELEMENTAL
 (et les bonnes options de compilation, ieee , -nofma , etc ...)

http://mesonh.aero.obs-mip.fr/gitweb/?p=MNH-git_open_source-lfs.git;a=tree;f=src/LIB/BITREP;hb=refs/heads/MN H-55X-dev-OPENACC

« MPPDB_CHECK » , pour vérifier les valeurs des tableaux entre exécution sur CPU et GPU , à la volée



Méso-NH + GPU(NVIDIA) : OpenACC

« MPPDB_CHECK » , pour vérifier les valeurs des tableaux entre exécution sur CPU et GPU , à la volée

- Le même code (compiler avec -acc=host,gpu) est exécuté sur CPU et GPU
- Le maître lance l'esclave avec « mpi_comm_spawn »
 - Le maître tourne sur le CPU avec ACC_DEVICE_TYPE=HOST
 - L'esclave tourne sur le(s) GPU(s) ACC_DEVICE_TYPE=NVIDIA


MPI_COMM_SPAWN(...MESONH...)

Solveur de Pression MNH FFT3D => Solveur Multi-grille Géométrique

- Pourquoi FLAT_INV à base de « FFT 3D » ne passera pas sur les GPU = Tesla V100?
 - Bande passante Mémoire 900 GB/sec
 - Bande passante intra-noeud Nvlink = 300 GB/sec
 - Bande passante inter-noeud PCI-3 = 32 GB/sec
 - => transposition 30 fois plus lente que les accès mémoire (& calculs)
 - => Besoin d'une méthode « plus locale »
- Solveur Multi-grille Géométrique « TensorProductMultiGrid » version CPU Fortran
 - Eike Müller, University of Bath (art. ref. juillet 2014):
 - MultiGrille Géométrique
 - avec Raffinement Horizontale
 - & Relaxation en Ligne Verticale »
 - adapté à la forte anisotropie en Z des modèles Météo (développement fait pour le UK Met Office)
 - Une dizaine de sources fortran90+MPI.
- Interfacé/modifié pour Méso-NH
 - Testé jusqu'à 64k cores sur CPU
 - Porté sur GPU avec OpenACC
 - Pour faciliter le portage on a utilisé la « Managed-Memory »

Méso-NH GPU(NVIDIA): Jean-Zay Intel+GPU-V100 Marconi100 PW9+Nvidia GPU-V100

- Résultats pour Méso-NH complet
 - Code compilé en OpenACC + Managed Memory (pour le solveur MG)
 - Testé sur le cas « Hector le Convector » , Grille 1024x1024x129pts pour la version de Méso-NH MNH-544 + « modif OpenACC » + « librairie math bit-reproductible entre CPU et GPU » .
- Le Solveur « Multi-Grille » utilisant forcément 2^(2*N) processeurs , soit pour ces tests :1, 4, 16, 64 ou 256 tâches MPI , on doit choisir souvent un nombre de tâches MPI inférieur au maximum autorisé :
 - 32 cores + 4GPU par nœud pour MARCONI100(CINECA)
 - 40 cores + 4GPU par nœud pour Jean-Zay(IDRIS)
- De plus chaque nœud n'ayant que 4 GPU, on utilisera le MPS (Multi-Process Service) pour surbooker « au mieux » ce GPU et arriver au nombre de tâches requis par le solveur MG
 - c'est le paramètre NP(best) dans les tableaux à suivre .
 - Par exemple : à 2 nodes , soit 8 GPU , on peut utiliser soit 16 soit 64 tâches MPI .
 - La solution NP(best) = 16 tâches avec GPU est celle qui donne les meilleures performances et est donc reportée ici.

Méso-NH GPU(NVIDIA): Jean-Zay Intel+GPU-V100 Marconi100 PW9+Nvidia GPU-V100

• Légende :

- NN = nombre de nœuds utilisés
- NP(Max) = nombre max de taches MPI ↔ nombre de cores disponibles
- NP(best) = nombre de tâches MPI ayant donné les meilleures performances
- Méso-NH/MG (temps)= temps de Méso-NH avec le nouveau solveur Multi-Grille
- Méso-NH/FFT(temps)= temps de Méso-NH avec le solveur standard utilisant les FFT-3D
- Pour les lignes SpeedUP
 - Méso-NH/FFT = SpeedUP du Solveur standard-FFT sur CPU versus le MG sur GPU
 - Méso-NH/MG = SpeedUP du Solveur Multi-Grille sur CPU versus GPU

Méso-NH GPU/NVIDIA: Marconi100 PW9(32c)+4xNvidia GPU-V100

MARCONI-100 / IBM-PW9 + 4*GPU-NVIDIA/V100(16GO)								
Hector 1024x102	•		NN(GPU)					
100 pas de t	temps	4(16)	8(32)	16(64)				
	NP(Max)	128	256	512				
Méso-NH/MG PW9+V100	NP(best)	16 (64 Low Mem)	64	256				
	Gri.Local	256^2	128^2	64^2				
	Time(sec)	1217.678	243.392	124.461				
Méso-NH/FFT	NP(best)	128	256	512				
PW9	Time(sec)	3485.194	1414.476	735.248				
Méso-NH/FFT	SpeedUP	2.86	5.81	5.90				

Méso-NH GPU/NVIDIA: Jean-Zay Intel-CLK(2*20c)+4xNvidia GPU-V100

	Jean-Z	ay / Intel-CLK + 4*GPU-NV	'IDIA/V100(32GO)				
Hector 1024x10	•		NN(GPU)				
100 pas de t	temps	4(16)	8(32)	16(64)			
	NP(Max)	160	320	640			
Méso-NH/MG	NP(best)	64	64	256			
CLK+V100	Gri.Local	128^2	128^2	64^2			
	Time(sec)	622.520	345.560	186.107			
Méso-NH/FFT CLK	NP(best)	160	320	640			
O_IX	Time(sec)	3815.711	1780.178	926.098			
Méso-NH/FFT	SpeedUP	6.12	5.15	4.98			

Méso-NH GPU/NVIDIA: Marconi100 PW9(32c)+4xNvidia GPU-V100

MARCONI-100 / IBM-PW9 + 4*GPU-NVIDIA/V100(16GO)

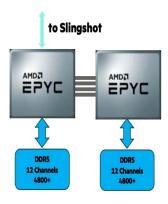
Méso-NH: Hector 1024x1024x128pts 100 pas de temps

Algo	ADV.MET	ADV.UVW	TURB.TKEL	PRESSURE	CLOUD.ICE3	TOTAL
Méso-NH/ MG PW9+V100 Time(sec) 16NN/ 256NP(64GPU)	18.545	18.090	20.393	27.640	11.098	124.461
Méso- NHFFT PW9 Time(sec) 16NN/512NP	146.763	215.584	186.886	99.761	53.138	735.248
Méso-NH/ FFT SpeedUP	7.91	11.91	9.16	3.60	4.78	5.90

AIVIA ZUZZ , TUUIUUSE, 1-3 JUITI ZUZZ

Méso-NH

What Else ;-)


Méso-NH: Nouvelle Machine CINES ADASTRA HPE/CRAY Configuration Matériel

COMPUTE NODES ET BLADES

- 169 Bard Peak blades (2 nodes per blade)
 - 1x AMD Trento
 - 4x AMD MI200
 - 8x 32GB DIMMs
 - No on node storage
 - Quad injection Slingshot-11
 - APOD RADEON ASTINCT

 APOD RADE

- 134 Antero blades (4 nodes per blade)
 - 2x Genoa 320W 96c
 - 12x 32GB = 768 GB DDR5, 5200MHz
 - No on node storage
 - Single injection Slingshot-11

Méso-NH: Contrat de Progrès CINES - HPE

➤ Date de démarrage : 8 novembre 2021

➤ Moyens humains :

• Gouvernance technique : HPE

• Ingénieurs expert HPC: 4 ETP* HPE + 1 ETP AMD

Applications: MesoNH, TRUST, MagIC, GYSELA, MUMPS

- + Mise à disposition d'une plateforme de développement Apollo 6500 gen10 + (CPU Milan, GPU MI100)
- + Accès aux centres de compétences HPC

Méso-NH: Contrat de Progrès CINES – HPE Logiciel: HPE CrayAMD

HPE CRAY PROGRAMMING ENVIRONMENT

- Cray Programming Environment
 - Cray Fortran Compiler
 - OpenACC 2.0 for Fortran.
 - OpenMP with offload for Fortran and C/C++
 - Clang (LLVM) C, C++, and UPC Compiler
 - CrayLibs (libraries and utilities)
 - All supporting documentation and man pages

Méso-NH + GPU (AMD): OpenACC

Contrat de progrès :

- Juan Escobar , Philippe Wautelet / LAERO
- Naima Alaoui/Eolen, Pascal Vezolle, Pierre-Eric Bernard / HPE
- Machine de portage CINES01 : 1 nœud 2*CPU'(*32c) Rome + 8GPU/AMD-MI100(lien PCI)
- Compilateur/Environnement F90 CRAY + OpenACC : Ce qui Marche ;-)
 - l' « array syntax » fonctionne avec OpenACC : OUF , pas besoin de réécrire tout le code !!!
 - MPPDB_CHECK : Mais il a fallu compiler/utiliser OpenMPI , car le MPICRAY ne supporte pas MPI COMM SPAWN (dans la version utilisée)
 - La Librairie « Bit-reproductibilité » : Mais il a fallu rajouter des directive OpenMP «omp declare target » dans le code C++ , car OpenACC n'est supporté que par le compilateur CRAY C++

Méso-NH + GPU (AMD): OpenACC

- Mais beaucoup de BUG de compilateur F90 CRAY pour OpenACC
 - Tout les problèmes ci-dessous soumis à HPE/CRAY, en attente de correction/amélioration du compilateur ...
 - ... en attendant => Bypass
 - Plantage du compilateur : ICE ou SegFault à l'exécution
 - Problème avec : les chaînes de caractères , les variables scalaires allocatable , les % des types dérivés dans les parties calculs
 - Données « not found in present tab » / « host region overlap present » => Bypass :: allocatable → pointer + pile
 - Problème de performance à l'exécution
 - Tableaux « internal » , copié CPU<->GPU indûment => Bypass :: par macro CPP
 « present_cr », dupliquer les «!\$acc ... present(tab) »
 - «!\$acc loop independent ... » , inhibe la parallélisation !!!! => Bypass :: macro CPP « acc_nv » , pour déactiver la ligne avec le compilateur Cray
 - Les routines ELEMENTAL « bit-reproductible », inhibe la parallélisation => Bypass :: array syntax/where → DO CONCURRENT
 - La plupart des calculs 3D (array syntax/ do nesté / do concurrent) ne collapsent pas en 1 seule boucle (le compilo NVIDIA collapse systématiquement et a de meilleurs performances)
 - Etc ...

Méso-NH + GPU (AMD): OpenACC 1 Noeud Prototype CINES01

- 1 Noeud prototype CINES01 :
 - 2 processeurs AMD Rome (2*32 cœurs x2 threads, 1To mémoire)
 - 8 accélérateurs AMD MI100 (1 AMD-MI100,32 GO HBM2)
 - Liens CPU<->GPU et GPU<->GPU «PCX»

REM : dans le run suivant seuls 4GPUs sont utilisés car plusieurs étaient en panne

... résultats très très préliminaires (l'optimisation n'a pas encore commencé ...)

Méso-NH GPU AMD : Prototype CINES01 CPU/AMD-Rome(2*32c)+4xGPU-AMD/MI100

CINES01 / 2*AMD-Rome + 4*GPU-AMD/MI100(32GO)

Méso-NH: Hector 512x512x128pts 100 pas de temps

Algo	ADV.MET	ADV.UVW	TURB.TKEL	PRESSURE	CLOUD.ICE3	TOTAL
Méso-NH/MG Rome+MI100 Time(sec) 1NN/16NP(4GPU)	134.277	75.567	100.547	134.223	43.847	627.735
Méso-NN/FFT Rome Time(sec) 1NN/64NP	1063.979	665.709	521.207	374.908	209.323	3056.794
Méso-NH/FFT SpeedUP	7.92	8.80	5.18	2.79	4.77	4.87

Méso-NH + GPU (AMD): OpenACC 1 Noeud ADASTRA/GPU

– 1 Noeud ADASTRA/GPU :

- 1 processeur AMD Trento (64 cœurs physiques x2 threads,256Go mémoire)
- 4 accélérateurs AMD MI250x (1AMD-MI250X = 128 GO HBM2)
- Liens CPU<->GPU et GPU<->GPU « Infinity Fabrics »
- 4 connexions réseaux « Slingshot » à 200Gb/s chacune, connectées directement aux GPUs .

REM : 1 AMD-MI250X, contient en fait 2 GPUs indépendants (± MI100) donc par nœud on voit 8 GPUs « utilisables »

- Premiers résultats préliminaires sur GPU-MI250X
 - Run réalisé par Pascal VEZOLLE de HPE, Merci ;-)
 - La partie CPU n'a pas été retournée
 ← reprise du run précédent sur prototype
 CINES01

Méso-NH GPU AMD : 1Noeud «ADASTRA/GPU» CPU/AMD-Rome(2*32c)<->4xGPU-AMD/MI250X(*2)

CINES01 / 2*AMD-Rome ↔ ADASTRA 4*GPU-AMD/MI250X(32GO)

Méso-NH: Hector 512x512x128pts 100 pas de temps

Algo	ADV.MET	ADV.UVW	TURB.TKEL	PRESSURE	CLOUD.ICE3	TOTAL
Méso-NH/MG Trento+MI250X Time(sec) 1NN/16NP(4GPU)	69.621	40.187	54.505	83.115	38.362	404.122
Méso-NN/FFT Rome Time(sec) 1NN/64NP	1063.979	665.709	521.207	374.908	209.323	3056.794
Méso-NH/FFT SpeedUP	15.28	16.56	9.56	4.51	5.45	7.56

AIVIA ZUZZ , I UUIUUSE, 1-3 JUIII ZUZZ

Méso-NH sur GPU

CONCLUSION

- Une première version de Méso-NH intégrant le nouveau «Solveur Multi-grille» pour GPU en Fortran+OpenACC a été codée en Multi-GPU .
- Elle a été testée avec des bonnes performances sur 16 nœuds /64 GPUs , aussi bien sur architecture CPU-Intel que CPU-IBM + GPU Nvidia .
- Le SpeedUP ≥ 4.98 / CPU , tant que les tailles de grilles locales ≥ 64^2
- La version OpenACC est en cours (finalisation) de phasage avec la version officielle MNH-55X
- Un portage sur Architecture CPU+GPU AMD avec OpenACC en cours Premiers résultats encourageants à optimiser ...
 - → Grand Challenge ADASTRA/GPU Méso-NH (octobre 2022) :
 - « Giga-LES de rafales avec Méso-NH »
 - Grille 2048x2048pts / 100mètres, 64 noeuds / 256(x2) GPUs (voir plus ...)
 - Contribution à l'ANR JCJCWINDGUST (https://anr.fr/Projet-ANR-21-CE01-0002)

Méso-NH

back-slide

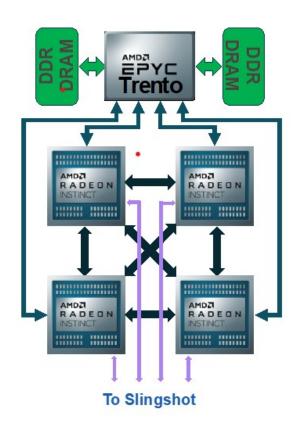
Méso-NH + GPU : Filepp + MNH_Expand_Array

- MNH_Expand_Array :
 - Un préprocesseur utilisant « filepp » <=> cpp like , amélioré programmable en Perl
 - Pour convertir l'array syntax/where en loop nesté , do concurrent
 - + directive OpenACC / OpenMP au besoin
 - Ajout de commentaires dans le code + déclaration des bornes des boucles
 - Pour de l'array syntax
 !\$mnh_expand_array(ii=iib:iie:iis, ij=ijb:ije:ijs, ik=ikb:ike:iks)
 Array syntax
 !\$mnh_end_expand_array(Commentaire)
 - Pour les Where
 !\$mnh_expand_where(ii=iib:iie:ip , ij=ijb:ije:ijs , ik=ikb:ike:iks)
 Where + Array Syntax
 !\$mnh_end_expand_where(Commentaire)

https://github.com/JuanEscobarMunoz/MNH Expand Array

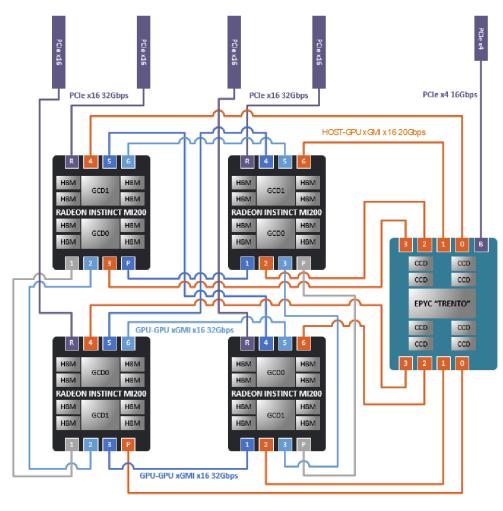
Méso-NH GPU: Jean-Zay Intel-CLK+4xNvidia GPU-V100

		Jean-Zay / Intel-CLK + 4*GPU-NVIDIA/V100(32GO)							
	Hector 512x512x128pts		NNODES(GPU)						
100 pas de	temps	1(4)	2(8)	4(16)	8(32)	16(64)			
	NP(Max)	40	80	160	320	640			
Méso-NH/MG	NP(best)	16	64	64	256	256			
CLK+V100	Gri.Local	128^2	64^2	64^2	32^2	32^2			
	Time(sec)	550.106	290.211	195.484	140.554	117.467			
Méso-NH/MG CLK	NP(best)	TD	64	64	256	TD			
OLIX	Time(sec)	TD	2412.452	1777.899	609.364	TD			
Méso-NH/FFT CLK	NP(best)	40	80	160	320	640			
CLK	Time(sec)	4019.054	1945.792	1008.659	476.870	245.006			
Méso-NH/MG	SpeedUp	TD	5.94	9.09	4.33	TD			
Méso-NH/FFT	SpeedUP	7.30	6.70	5.15	3.39	2.08			


Solveur MG Multi-GPU « StandAlone »: Marconi100PW9+4xNvidia GPU-V100

	MARCO	NI-100 / IBM-I	PW9 + 4*GPL	J-NVIDIA/V10	0(16GO)			
MG 1024x10	•		NNODES/NP(GPU)					
100 pas de	L00 pas de temps		1/4(4)	1/16(4)	2/16(8)	4/64(16)		
	NP(Max)	32	32	32	64	128		
	Gri.Local	1024^2	512^2	256^2	256^2	128^2		
MG PW9+V100	Time(sec)	12.48	4.466	5.567	3.799	4.407		
MG PW9	Time(sec)	1252.0	253.3	64.91	59.18	15.84		
Méso-NH/MG	SpeedUP	100.32	56.71	11.65	15.57	3.59		

Méso-NH + GPU (AMD): OpenACC


Noeud ADASTRA/GPU :

Méso-NH + GPU (AMD): OpenACC

– Noeud ADASTRA/GPU :

Méso-NH GPU: Marconi100 PW9+4xNvidia GPU-V100

	MARCONI-100 / IBM-PW9 + 4*GPU-NVIDIA/V100(16GO)							
	x512x128pts de temps	NNODES(GPU)						
200 pas	ao tompo	1	2(8)	4(16)	8(32)	16(64)		
	NP(Max)	Low-MeM	64	128	256	512		
Méso-NH/MG PW9+V100	NP(best)		16	64	64	256		
1 000 0 100	Gri.Local		128^2	64^2	64^2	32^2		
	Time(sec)		245.724	125.98	89.663	70.718		
Méso-NH/MG	NP(best)		64	64	256	TD		
PW9	Time(sec)		1689.106	892.895	368.020	TD		
Méso-NH/FFT	NP(best)		64	128	256	512		
PW9	Time(sec)		1522.280	797.687	383.780	188.311		
Méso-NH/MG	SpeedUp		6.87	7.08	4.27	TD		
Méso-NH/FFT	SpeedUP		6.19	6.33	4.10	2.66		

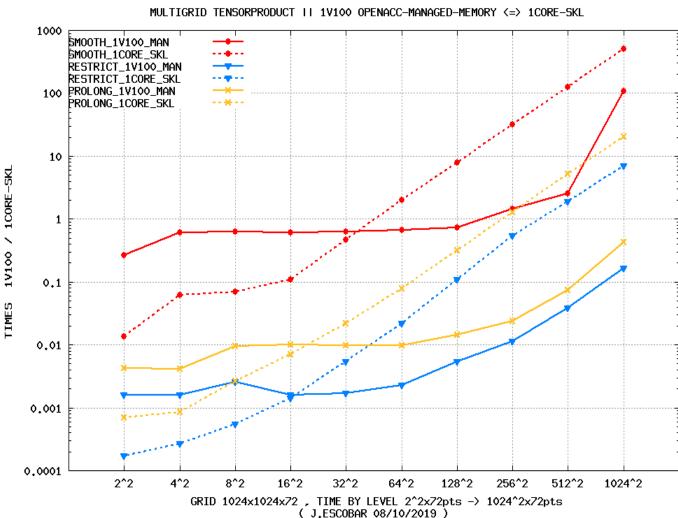
Méso-NH GPU: Marconi100 PW9+4xNvidia GPU-V100

MARCONI-100 / IBM-PW9 + 4*GPU-NVIDIA/V100(16GO)

Méso-NH: Hector 512x512x128pts 100 pas de temps

Algo	ADV.MET	ADV.UVW	TURB.TKE L	PRESSUR E	CLOUD.IC E3	TOTAL
Méso- NH/MG PW9+V100 Time(sec) 4NN/ 64NP(16GPU)	19.350	17.465	19.659	25.296	10.466	125.980
Méso- NHFFT PW9 Time(sec) 4NN/128NP	185.906	214.645	188.279	78.738	55.525	797.687
Méso-NH/ FFT SpeedUP	9.60	12.29	9.57	3.11	5.30	6.33

Méso-NH GPU: Jean-Zay(Prototype) Intel-SKY+8xNvidia GPU-A100


			Jean-Zay / Intel-SKL + 8*GPU-NVIDIA/A100	0(40GO)				
	Hector 512x51 100 pas de		NNODE	ES(GPU)				
			1(8)	2(16)				
		NP(Max)	48	96				
	Méso-NH/MG NP(best) SKL+A100		16	64				
		Gri.Local	128^2	64^2				
		Time(sec)	354.419	227.060				
	Méso-NH/FFT SKL	NP(best)	40	80				
		Time(sec)	4129.130	1963.850				
N	Méso-NH/FFT	SpeedUP	11.65	8.64				

Solveur Multigille Géométrique(Stand Alone)

Test préliminaire : Comparaison des temps de calculs

1GPU/V100 versus 1CORE-Sylake Smoother/Prolongation/Restriction

Méso-NH GPU: Marconi100 PW9+Nvidia GPU-V100

- Nouveauté 2021 : Au travers d'un Accès Préparatoire PRACE nous avons continué nos efforts sur la machine MARCONI100(CINECA) (14ème au Top 500), IBM-PW9+GPU-NVIDIA/V100.
 - Poursuivre le portage du Solveur de Pression Multigrille sur GPU, en profitant de la « Managed Memory », plus rapide sur ce type d'architecture « Cpu-IBM+GPU-Nvidia » possédant trois liens NVLINK entre les CPU et les GPU, et offrant du coup un débit de copie de mémoire-CPU à mémoire-GPU d'un ordre de grandeur supérieur aux architectures « Cpu-Intel+GPU-Nvidia » comme Jean-Zay connecté uniquement par PCI-Express.
- Plusieurs améliorations importantes on été rajoutées au code MG :
 - Remplacement de « tableaux automatiques » en « pointer contiguous » et toutes les allocations mémoire « allocate » par nos propres routines « mnh allocate* »
 - Remplacement d'instruction « array syntaxe » en « do concurrent » (bypass bug nvfortran)
 - Allocation une fois pour toutes de tous les tableaux 3D « temporaires »intervenant dans le solveur MG
 - Rajout des directives «!\$acc kernels + loop indepedent » aussi bien dans le code MG proprement dit (standalone), que dans la partie des routines Méso-NH appelant ce préconditionneur MG dans un solveur Conjugé Residual (pressurez , zsolver , zsolver inv ,contrav , gdiv , etc ...)
 - Modification des routines utilisant MPI dans le solveur MG, en passant par des buffers intermédiaires préalloués sur GPU (sans la Managed Memory) pour tirer profit des communications « GPU Direct»
 - Contournement d'un bug des compilateurs nvidia/21.X sur les «!\$acc atomic » rendant les calculs complètement faux, mais uniquement sur CPU!
 - Pour les routines « purement » Méso-NH , remplacement des routines « update_halo » et « update_halo2 » par des routines optimisées pour les GPU get_halo_d et get_halo2_d elles aussi utilisant des buffers préalloués sur GPU et le « GPU direct »
 - Rajout d'un paramètre en namelist «iswitch_cpu_gpu » permettant de basculer les calculs du MG sur CPU quand la sous-grille locale est trop petite pour apporter un gain de performance sur GPU (ce paramètre sera à régler en fonction de la taille de grille initiale et du nombre de GPU/CPU)

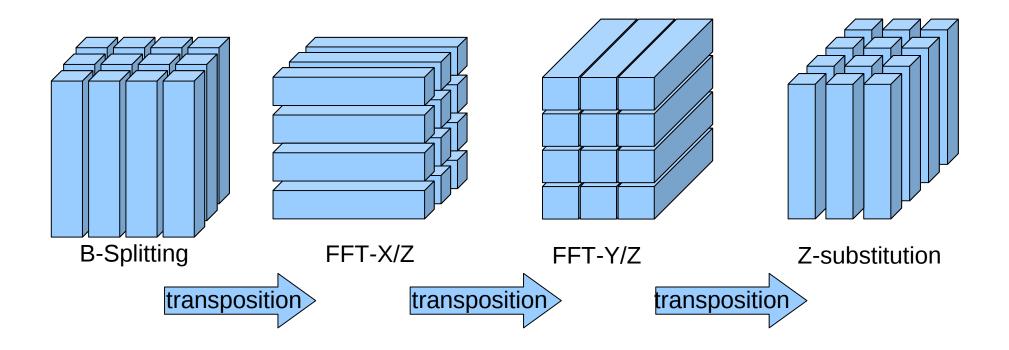
Méso-NH Standard: Fujitsu AF64X

Nouveauté 2021 :

- Toujours grâce a la cellule de veille technologique, les premiers tests de portage ont été faits sur le nouveau prototype, Irene-ARM du TGCC, comprenant 80 nœuds ARM-A64FX <=> les processeurs vectoriels avec mémoire rapide HBM, équipant le Super Calculateur Fugaku Japonais, 1er au Top 500, depuis sa mise en route en juin 2020.
- Sur ce prototype nous avons testé 4 compilateurs :
 - gnu/gfortran/11.1.0
 - arm/armflang/21.0.0 (basé sur llvm 11.0.0)
 - nvidia/pgf90=nvfortran/21.5
 - fuji/frt/1.1.0
- Le code a pu être compilé avec ces 4 compilateurs, mais nous n'avons réussi à exécuter nos cas tests qu'avec les compilateurs gnu/gfortran et arm/armflang, les 2 autres compilateurs générant des erreurs mémoire « SegFault » impossibles à identifier/résoudre même avec le debugger « ddt ».
- De plus les performances avec le compilateur armflang ne scalent pas bien du tout , donc nous ne reporterons pas ici les performances avec ce compilateur mais seulement celles avec le compilateur gfortran .

Méso-NH + GPU/Accélérateur

EN FRANCE


- GENCI : 2016-21 Mise en place de plusieurs prototypes Accéléré
 - FRIOUL / CINES(MESRI): 48 nœuds * Intel Xeon-PHI KNL * 68C
 - OUESSANT/ IDRIS(CNRS): 12 nœuds * [2 IBM-PW8*20C + 4GPU Nvidia P100]
 - INTI/ TGCC(CEA): 20 nœuds * 2*ARM-TX2*32C
 - IRENE-A64FX/TGCC(CEA): 80 noeuds*1*Fujitsu A64FX*48C
 - JEAN-ZAY/IDRIS(CNRS): 3 nœuds *[2I ntel SKL + 8GPU Nvidia A100]
- Machines de production (2021)
 - accéléré
 - IRENE-KNL / TGCC(CEA): 828 nœuds * Intel Xeon-PHI KNL *68C= 2 PF
 - JEAN-ZAY / IDRIS(CNRS) : (261+351) nœuds * [2 Intel CLK*40C + 4GPU NvidiaV100] = 15 PF
 - classique
 - OCCIGEN/CINES(MESRI): 1260 nœuds Intel BW + 2160 nœuds Intel HW = 3.5 PF
 - IRENE-AMD / TGCC(CEA): 2292 nœuds * AMD-EPYC 2*64C = 12 PF
 - BELENOS+TARANIS/METEO-FRANCE: 2 * 2256 nœuds * AMD-EPYC 2*64C = 2*10 PF
- Machines à Venir (2022)
 - ADASTRA / CINES(MESRI): X nœuds AMD-EPYC++ * 4 GPU AMD MI250X = 75PF

Solveur de Pression MNH

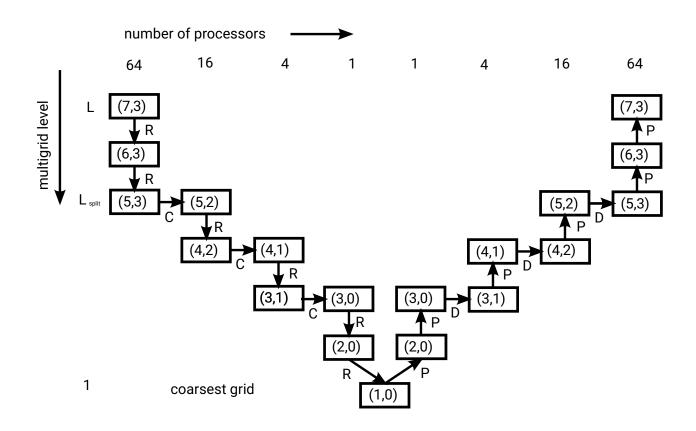
Méthode itérative : « Gradient Conjugué » + Pré-conditionneur FLATINV

- Parallélisation du pré-conditionneur FLAT_INV :
 - décomposition de domaine dans 2 dimensions, à tour de rôle (Tetrix), avec transposition des données entre tous les processeurs à chaque étape FFT-X/Y ou Élimination de Gauss en Z

Solveur de Pression MNH => Solveur Multi-grille Géométrique

- Solveur Multi-grille Géométrique « TensorProductMultiGrid »
 - Adaptation à Méso-NH de la version Fortran90 :
 - Interface et appel a la place de FLAT_INV
 - Adaptation au équations de Méso-NH ↔ coefficients des « tensorproduct »
 - Codage des conditions aux limites propre à Méso-NH <-> Newmann
 - Debuggage du code parallèle «original» ↔ version bit-reproductible
 - Premier test préliminaire de Méso-NH sur Grande Grille sur IRENE(TGCC):
 - Pas mal de paramètres libres à régler: Méthode itérative (Richardson/CG), taux de convergence,
 Smoother(Jacobi, SOR ...), nombre de niveaux, Restriction, Prolongation, Solveur « gros grain »
 - Hector le Convector 2048x2048x256
 Temps Solveur, 1OO pas de temps : 256P/220.765s | 1024P/110.932s | 4096P/17.828s
 - Premier portage sur GPU de la version « Stand Alone » fortran90 (CALMIP & IDRIS)
 - Refactoring des tableaux KJI → IJK , pour « coalescence mémoire » sur GPU
 - Rajout d'une dizaine de directives «!\$acc kernel »
 - Compilation pour exécution en parallèle, à la fois :
 - En multicore pour le CPU

 ACC_NUM_CORE = OMP_NUM_THREADS
 - et « Managed Memory » pour le GPU → pas besoin des directives «!\$acc data »
 « -ta=multicore,tesla:managed »


=> code bit-reproductible entre le CPU // et le GPU

Solveur Multi-grille Géométrique

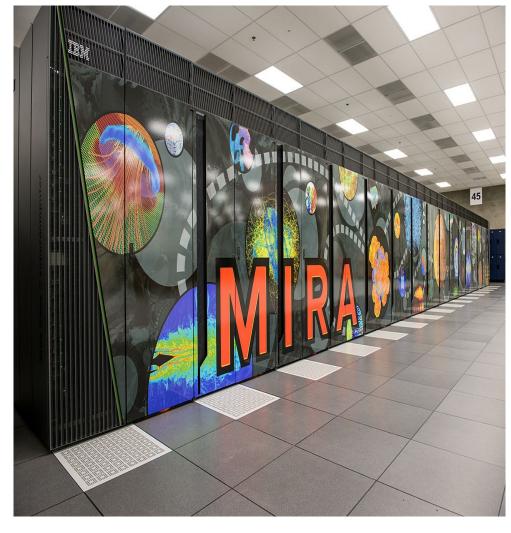
«TensorProductMultiGrid»:

Collecte/Distribution des grilles / fc(Nb_processeurs)

Méso-NH <=> HPCG enfin un bench qui sert à quelque chose!

https://www.hpcg-benchmark.org → Results → June 2019

June 2019 HPCG Results


•	unc	zoro in od nesans						
	Rank	Site	Computer	Cores	HPL Rmax (Pflop/s)	TOP500 Rank	HPCG (Pflop/s)	Fraction of Peak
	1	DOE/SC/ORNL USA	Summit – AC922, IBM POWER9 22C 3.07GHz, dual-rail Mellanox EDR Infiniband, NVIDIA Volta V100 IBM	2,414,592	148.600	1	2.926	1.5%
	2	DOE/NNSA/LLNL USA	Sierra – S922LC, Power9 22C 3.1GHz, Mellanox EDR, NVIDIA Tesla V100 IBM / NVIDIA / Mellanox	1,572,480	94.640	2	1.796	1.4%
	3	Riken Center for Computational Science Japan	K computer – , SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10.510	20	0.603	5.3%
	4	DOE/NNSA/LANL/SNL USA	Trinity – Cray XC40, Intel Xeon E5-2698 v3 16C 2.3GHz, Aries, Intel Xeon Phi 7250 68C 1.4GHz Cray	979,072	20.159	7	0.546	1.3%
	5	National Institute of Advanced Industrial Science and Technology (AIST) Japan	AI Bridging Cloud Infrastructure (ABCI) – PRIMERGY CX2570M4, Intel Xeon Gold 6148 20C 2.4GHz, Infiniband EDR, NVIDIA Tesla V100 Fujitsu	391,680	19.880	8	0.509	1.6%
) I	6	Swiss National Supercomputing Centre (CSCS)	Piz Daint - Cray XC50, Intel Xeon E5-2690v3 12C 2.6GHz, Cray Aries, NVIDIA	387 872	21 230	6	0 497	1.8%

Debuggage Aller Retour PC <=> Cluster Local <=> Centre Régional <=> Tier 0

