

# Variabilité spatio-temporelle des jours propices aux événements de pluie verglaçante et neige collante en Europe dans le contexte du changement climatique

Florian RAYMOND<sup>1,2</sup>, Philippe DRONBINSKI<sup>2</sup> & Nicolas ROCHE<sup>3</sup>

1 - Université Paris 8, UMR 7533 LADYSS

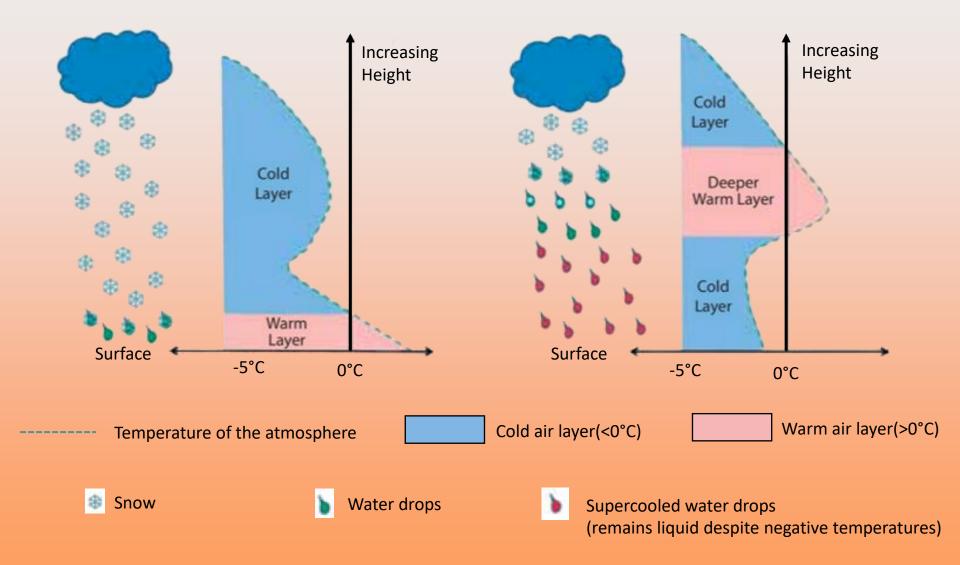
2 - École polytechnique, Université Paris Saclay, UMR 8539 LMD

3 - ENEDIS

XXXV<sup>ème</sup> colloque de l'AIC, 06-09 juillet 2022, Toulouse














## Wet snow and Freezing rain

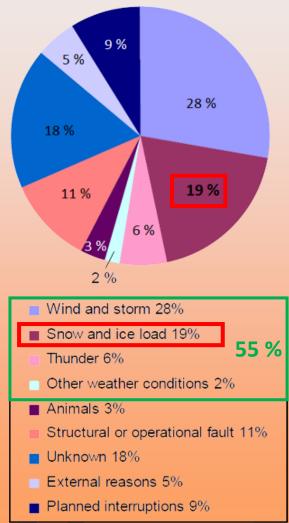


## Climatic events with impact



Damages following a freezing rain event in Slovenia, February 2014. In Forbes et al., 2014. Photo credits : Srdjan Zivulovic/Reuters & Marko Korosec/Solent News.

> 30 km of power line destroyed, 174 km out of service.


## Climatic events with impact



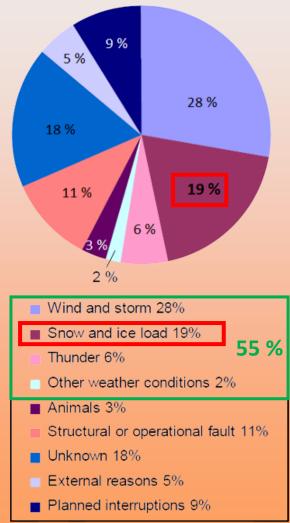
Damages following a freezing rain event in Slovenia, February 2014. In Forbes et al., 2014. Photo credits : Srdjan Zivulovic/Reuters & Marko Korosec/Solent News.

> 30 km of power line destroyed, 174 km out of service.

#### Causes of power system failure in Finland in 2006



## Climatic events with impact



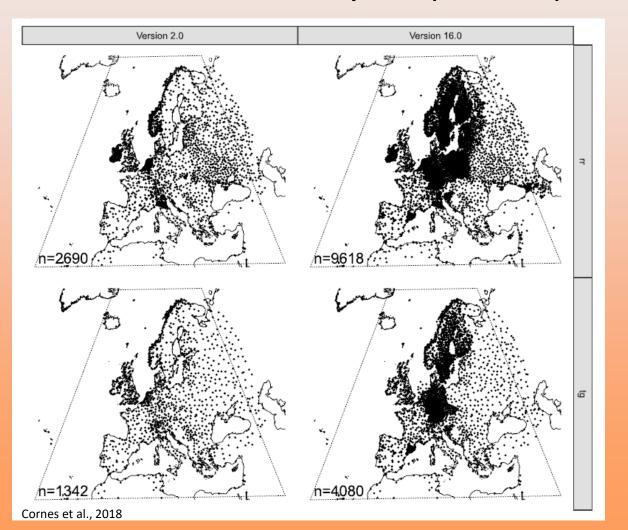

Damages following a freezing rain event in Slovenia, February 2014. In Forbes et al., 2014. Photo credits : Srdjan Zivulovic/Reuters & Marko Korosec/Solent News.

> 30 km of power line destroyed, 174 km out of service.

### > Only few studies in Europe, mainly in North America

#### Causes of power system failure in Finland in 2006




Martikainen et al., 2007

- What would be the future trends of freezing rain/wet snow events in Europe?

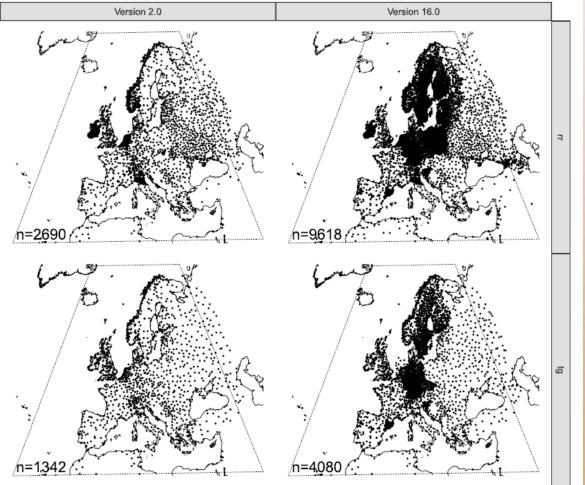
- What is the dominating variable controlling these trends?

- What would be the future trends of freezing rain/wet snow events in Europe?

#### - What is the dominating variable controlling these trends?



#### Historical period (1951-2018): E-OBS v22.0


- Regular grid 0.25°x0.25°

#### Daily:

- Rain accumulation
- Minimum temperature
- Maximum temperature

- What would be the future trends of freezing rain/wet snow events in Europe?

#### - What is the dominating variable controlling these trends?



#### Historical period (1951-2018): E-OBS v22.0

- Regular grid 0.25°x0.25°

#### Daily:

- Rain accumulation
- Minimum temperature
- Maximum temperature

+ : Well reproduce spatiotemporal evolution of temperature and precipitation series

- : Density of the stations can have a strong impact on the extreme values of the distribution

Cornes et al., 2018

## Future period: Med/Euro CORDEX RCM

| Institute (country)              | Global model                      | Régional model            | Covered period |
|----------------------------------|-----------------------------------|---------------------------|----------------|
| IPSL (France)                    | CM5A-MR                           | WRF381P                   | 1951-2100      |
| KNMI (Netherlands)               | EC-EARTH                          | RACMO22E                  | 1950(1)-2100   |
| SMHI (Sweden)                    | HadGEM2-ES                        | RCA4                      | 1970-2098      |
| CLMcom (Germany)                 | MPI-ESM-LR                        | CCLM4                     | 1950-2100      |
| DMI (Denmark)                    | NorESM1-M                         | HIRAM5                    | 1951-2100      |
| - 1972-2005<br>historical period | - 2026-2059<br>short-term horizon | - 2065-20<br>long-term he |                |

### Future period: Med/Euro CORDEX RCM

| Institute (country)             | Global model                      | Régional model            | Covered period |
|---------------------------------|-----------------------------------|---------------------------|----------------|
| IPSL (France)                   | CM5A-MR                           | WRF381P                   | 1951-2100      |
| KNMI (Netherlands)              | EC-EARTH                          | RACMO22E                  | 1950(1)-2100   |
| SMHI (Sweden)                   | HadGEM2-ES                        | RCA4                      | 1970-2098      |
| CLMcom (Germany)                | MPI-ESM-LR                        | CCLM4                     | 1950-2100      |
| DMI (Denmark)                   | NorESM1-M                         | HIRAM5                    | 1951-2100      |
| - 1972-2005<br>istorical period | - 2026-2059<br>short-term horizon | - 2065-20<br>long-term he |                |

How to reduce the uncertainty related to the different models (intern variability because of the parameterizations)?

Bias correction with the CDF-t method (**C**umulative **D**ensity **F**onction-**t**ransform ; Michelangeli et al., 2009)

<u>Objective</u>: to make the statistical distribution simulated of daily variable identical to the distribution observed at each point.

Reference data: ERA5 reanalyses (0.25° x 0.25° resolution). Period used: 1980-2018.

|      | Historical        | Future              |  |
|------|-------------------|---------------------|--|
| RCM  | F <sub>Gh</sub>   | F <sub>Gf</sub>     |  |
| ERA5 | F <sub>sh</sub> ↓ | F <sub>sh</sub> ? ▼ |  |

## Detection of the "high-impact icing precipitation favourable day"

No information about the precise wet snow/freezing rain events: apprehend the days with favourable conditions to the occurrence of these impacting events.

In the literature: wet snow (0°C to +2°C) and freezing rain (-5°C to +1°C); impact from 5 mm of accumulation.

## Detection of the "high-impact icing precipitation favourable day"

No information about the precise wet snow/freezing rain events: apprehend the days with favourable conditions to the occurrence of these impacting events.

In the literature: wet snow (0°C to +2°C) and freezing rain (-5°C to +1°C); impact from 5 mm of accumulation.

"Icing precipitation" as the generic term referring to both wet snow and freezing rain as their surface conditions of occurrence are rather similar

- Tmin  $\geq$  -5°C and Tmax  $\leq$  +2°C  $\longrightarrow$  Thermodynamical conditions day (TCD)

- RR ≥ 5 mm → Vulnerability conditions day (VCD)

## Thermodynamical (TCD) + vulnerability conditions (VCD) = high-impact icing precipitation favourable day (IPD)

# The attributing process

Apprehend the respective contribution of the thermodynamical and vulnerability conditions

perspective of uncertainty assessment

**TCD** (thermodynamical condition day)

VCD (vulnerability condition day)

**IPD** (high-impact icing precipitation favourable day)

## The attributing process

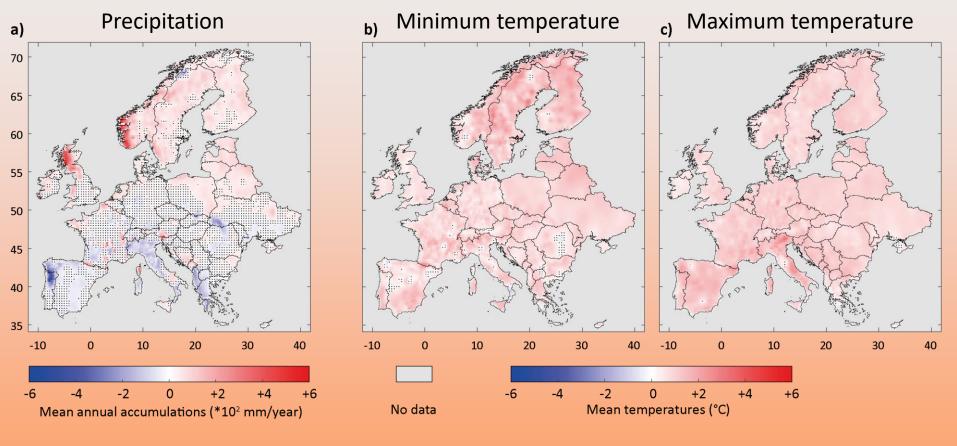
Apprehend the respective contribution of the thermodynamical and vulnerability conditions

perspective of uncertainty assessment

**TCD** (thermodynamical condition day)

VCD (vulnerability condition day)

**IPD** (high-impact icing precipitation favourable day)


ΔP(IPD)= difference in the probability of occurrence between the 2 periods of 34 years

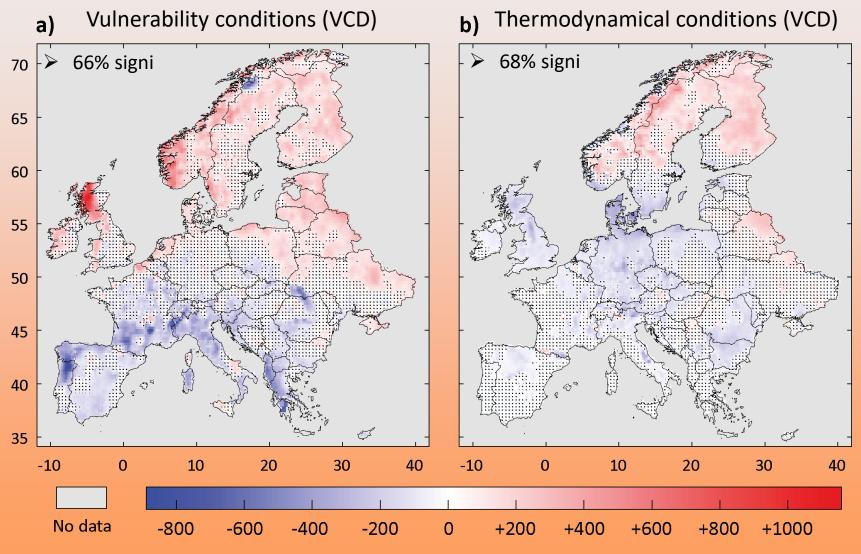
- If  $\Delta P(IPD)>0$ , TCD dominantly controls the change of IPD occurrence if  $\Delta P(TCD)/P(TCD) > \Delta P(VCD)/P(VCD)$ , otherwise it is VCD.

- If  $\Delta P(IPD) < 0$ , TCD dominantly controls the change of IPD occurrence if  $\Delta P(TCD)/P(TCD) < \Delta P(VCD)/P(VCD)$ , otherwise it is VCD.

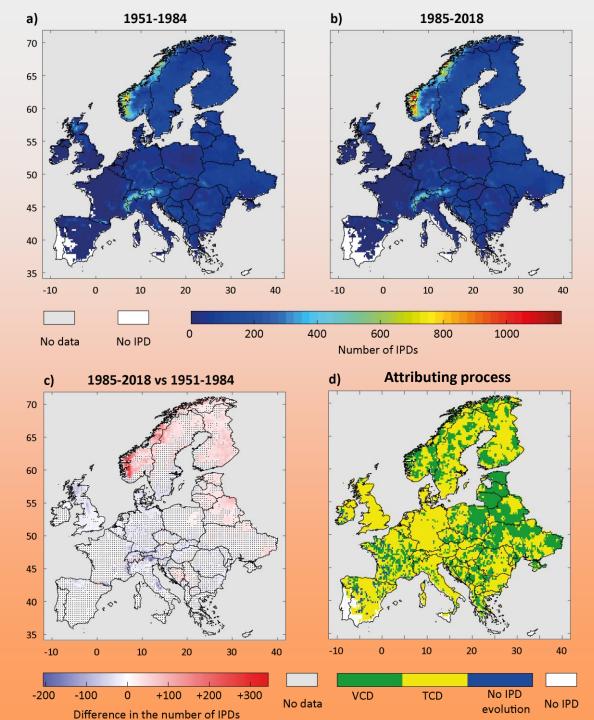
## Historical trends of the climatic surface variables

#### 1951-1984 vs 1985-2018




> 56% of significant trends

> 98% and 99% of significant trends


Climate change is affecting the temperatures in a more straightforward way over Europe than the precipitations, with less uncertainties

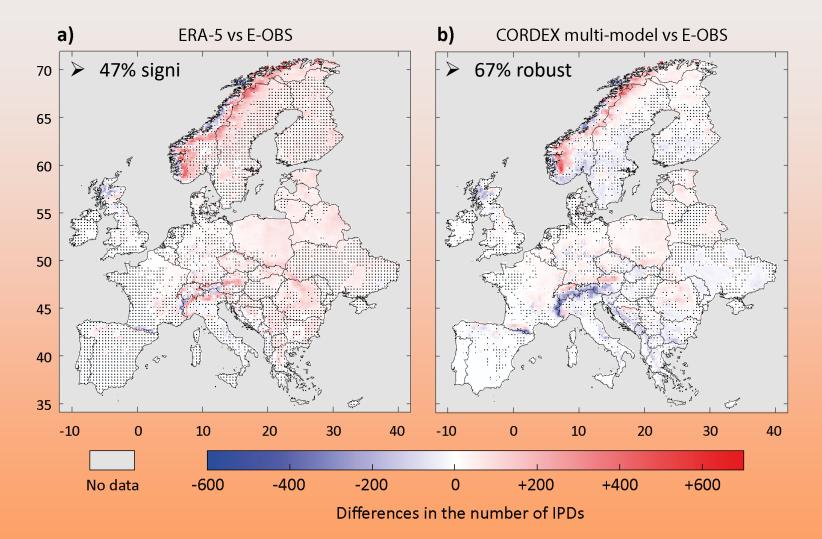
## Historical trends of the Vulnerability/Thermodynamical conditions

#### 1951-1984 vs 1985-2018



Difference in the number of days



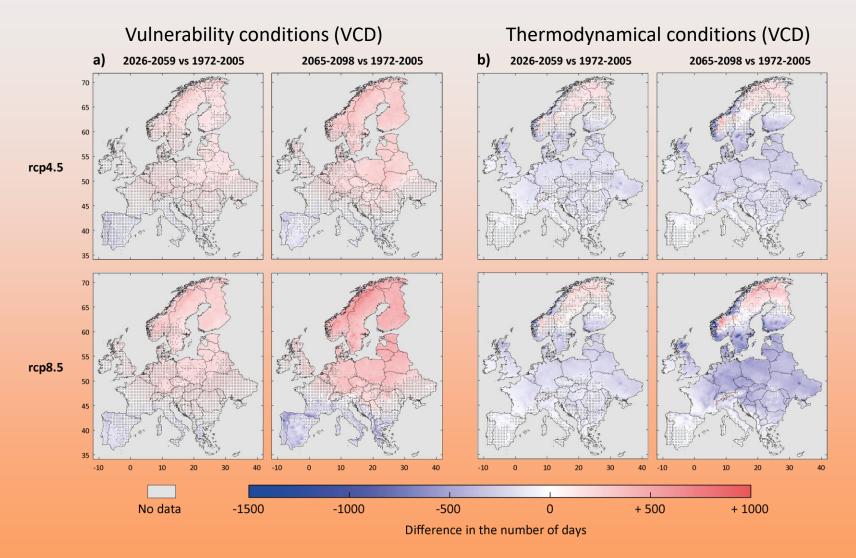

Historical trend in the High-impact icing precipitation favourable day (IPD), and attributing process

48% increase of IPD occurrence 47% decrease of IPD occurrence (but only 35% of significant trends)

> No clear influencial conditions explaining the IPD trend

> > 10/14

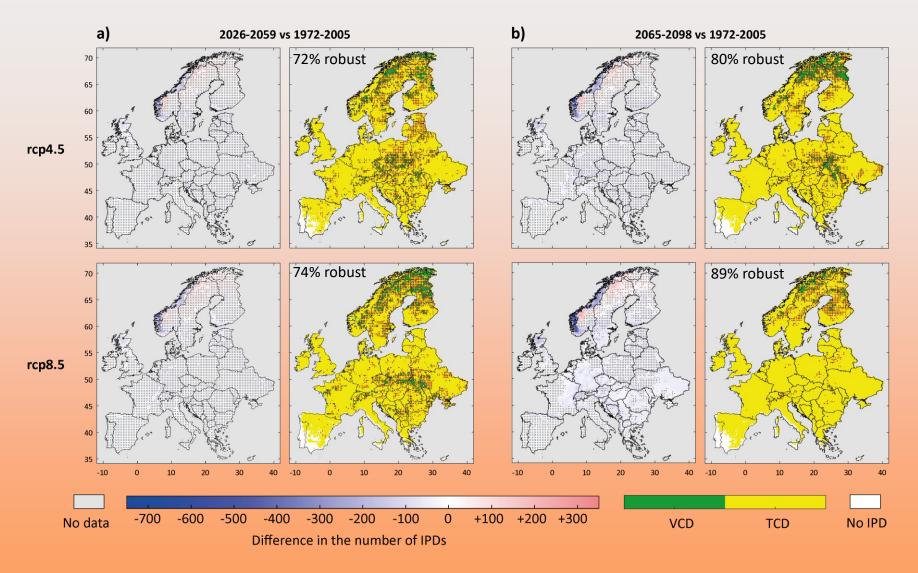
# Ability of the ERA-5 and the Cordex models to reproduce the historical variability of IPDs (1972-2005)




Overestimation (83% of the domain) of the ERA-5 in the VCD occurrence, so in IPD occurrence

Overestimation (60% of the domain) of the Cordex models in the IPD occurrence

11/14


## Future multi-model mean spatiotemporal variability of the Vulnerability and Thermodynamical conditions



Only from 27% to 67% of the grid points show robust future VCD trend: more uncertainties

From 59% to 90% of the grid points show robust future TCD trend: less uncertainties 12/14

## Future IPD spatiotemporal variability and attributing process



- From 8%(12%) to 18%(48%) show robust reduction in IPDs for RCP4.5 (RCP8.5)
- Strong contribution of the thermodynamical conditions (from 90% to 97%)

# Conclusion

IPDs occurrence should decrease in most of Europe during the 21<sup>st</sup> century.

# Conclusion

IPDs occurrence should decrease in most of Europe during the 21<sup>st</sup> century.

 A clear contribution of the warming temperatures as the most influential parameter in the future variability of the IPDs.

# Conclusion

IPDs occurrence should decrease in most of Europe during the 21<sup>st</sup> century.

 A clear contribution of the warming temperatures as the most influential parameter in the future variability of the IPDs.

 Temperature projections display lower uncertainties than precipitation projections in regional climate simulations: confidence in our results.