

CSTB
le futur en construction

Fichiers météorologiques de vagues de chaleur futures pour évaluer la résilience thermique des bâtiments au changement climatique

Colloque AIC – Toulouse 2022

07/07/2022 – Anaïs MACHARD, Emmanuel BOZONNET, Agnese SALVATI, Mamak POURABDOLLAHTOOTKABONI, Abhishek GAUR

AUGMENTATION FULGURANTE DE LA CLIMATISATION DE CONFORT

Mondialement

- > 2020: climatisation = 10% conso électricité (AIE 2018)
- > 2050: conso climatisation mondiale x 3 (AIE 2018)

En France

- > 2016: 11% des ménages équipés (ADEME 2021)
- > 2020: 26% des ménages équipés (ADEME 2021)
- > Impact environnemental des réfrigérants
- > Impact sur l'ilôt de chaleur urbain

RISQUE SANITAIRE LIÉ AUX FORTES CHALEUR SANS CLIMATISATION

Canicule de 2003

- > 70,000 surmortalités en Europe
- > 15,000 en France

PROJET INTERNATIONAL IEA EBC ANNEX 80 : « RESILIENT COOLING » (2019-2023)

> **Objectif**: vers des solutions résilientes de limitation des surchauffes ou de rafraichissement peu consommatrices

» « Resilient cooling » : Solutions qui intègrent l'échelle de l'individu et de la société dans son ensemble, ainsi que leur capacité à résister, ou à prévenir, les effets de surchauffe des habitats liés au changement climatique (Miller et al. 2021; Attia et al. 2021; Zhang et al. 2021).

FICHIERS MÉTÉOROLOGIQUES TRADITIONNELLEMENT UTILISÉS EN STD

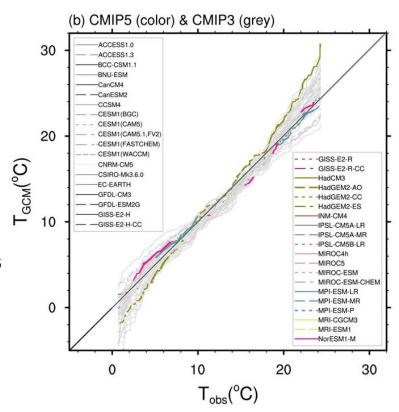
Séquences conçues pour les besoins de chauffage

Création d'années types représentatives du climat sur 20 années historiques (poids égal donné à la température de l'air, l'humidité et le rayonnement, poids secondaire donné à la vitesse du vent) --> Pour évaluer les besoins énergétiques

Mois chaud règlementaire empirique pour le confort d'été

Règlementation Environnementale des Bâtiments RE-2020 : évaluation du confort d'été avec le climat de la canicule de 2003 --> Pour évaluer le confort thermique

BESOIN DE NOUVEAUX FICHIERS MÉTÉOROLOGIQUES POUR LA STD


- → Séquences climatiques extrêmes > risque de surchauffe dans les bâtiments Index de résilience à la surchauffe
- → Séquences issues de projections climatiques

 Concevoir et rénover aujourd'hui des bâtiments adaptés au changement climatique
- → Universels pour comparer des stratégies, des bâtiments, et des localisations avec les mêmes critères de performance

CRÉATION DE LA « WEATHER DATA TASK FORCE » AU SEIN DE L'ANNEXE 80

- > Méthodologie initiée dans la thèse de A. Machard (Machard et al., 2020), consolidée dans l'Annexe 80
- > Projections de modèles de climat régional MPI-RCA4, scénario RCP 8.5 de la BDD CORDEX
- > Une 20 aine d'institutions ont participé pour initier une BDD Internationale avec des fichiers météorologiques pour la STD comprenant des vagues de chaleur extrêmes dans toutes les zones de l'ASHRAE
- > Papier Data et code open-source afin que cette BDD s'agrandisse

Méthodologie

Step 1

- 1) Extraction of CORDEX data
 To extract climate data from NetCDF files.

 Method Python code (Machard et al., 2020) OR
 NetCDF extractor
- 2) Interpolation CORDEX data to transform 3hrs to 1hr frequency data, if needed

Outputs: Hourly weather datasets for the three 20-years periods in .csv format

Step 2

- 1) Bias-adjustment of CORDEX data
 To correct the bias associated to simulated RCM data is corrected using observations *Method:*Multivariate Bias Correction (Cannon, 2018)
- 2) Splitting global solar radiation
 To estimate direct normal and diffuse radiation from global horizontal radiation. *Method* Bolan-Ridley model (Boland et al., 2008)

Outputs: Bias-adjusted Hourly weather datasets for the three 20-years periods in .csv format

Step 3

- 1) Typical Meteorological Years (TMYs)
 Selection of appropriate meteorological data from 20
 years bias-adjusted hourly data. *Method:* EN ISO
 15927-4:2005 standard
- 2) Detect heatwaves across the hourly bias-adjusted datasets *Method:* Ouzeau et al. 2016
- 3) Select extreme heatwaves

Weather files for building thermal simulations

Final Output

Typical meteorological years(.epw)

- Historical (~2010)
- Future : medium term (~2050)
- Future: long term (~2090)

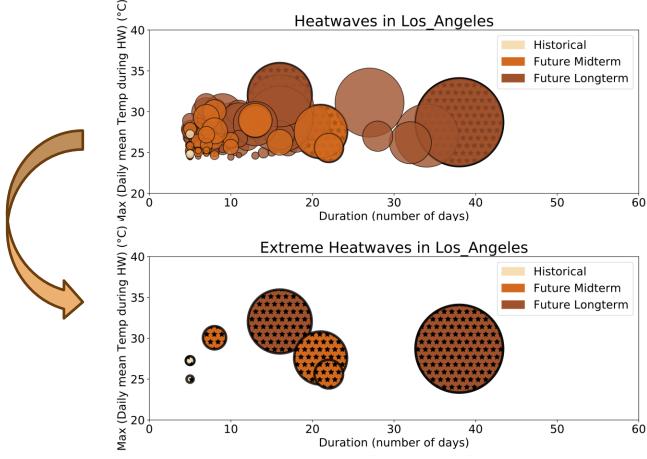
Final Output

Extreme heatwave years:(.epw)

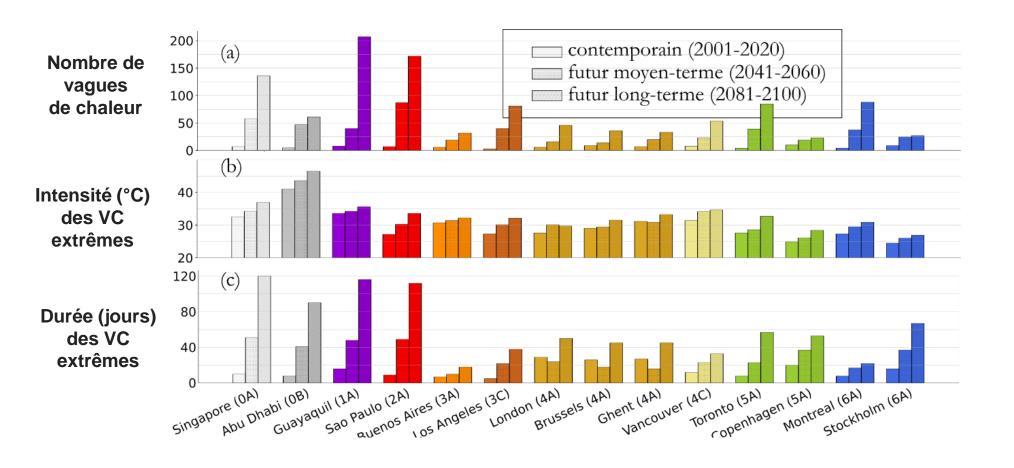
- Historical (~2010)
- Future : medium term (~2050)
- Future: long term (~2090)

Villes d'étude

CZ	Description	
0A	Extremely Hot Humid	
ОВ	Extremely Hot Dry	
1A	Very Hot Humid	
1B	Very Hot Dry	
2A	Hot Humid	
2B	Hot Dry	3
3A	Warm Humid	
3B	Warm Dry	
3C	Warm Marine	
4A	Mixed Humid	
4B	Mixed Dry	
4C	Mixed Marine	
5A	Cold Humid	
5B	Cold Dry	
5C	Cool Marine	
6A	Cold Humid	
6B	Cold Dry	



Sélection des vagues de chaleur


- Basée sur la définition des vagues de chaleur de (Ouzeau et al., 2016)
- Sélection des vagues de chaleur extrêmes: La plus longue, la plus intense, la plus sévère

Vagues de chaleur sélectionnées

Conclusions & Perspectives

CONCLUSIONS

- > Fichiers open data Réutilisables pour réaliser des études d'adaptation
- > 1ère étage dans la constitution de fichiers de référence permettant l'inter-comparaison de stratégies à travers toutes les zones climatiques de l'ASHRAE
- > **Méthodologie réplicable** à d'autres modèles de climat et scénarios RCP pour **prendre en compte les incertitudes** associées aux projections climatiques

PERSPECTIVES

- > Evaluation de l'impact des températures extrêmes sur :
 - le confort d'été, voir le risque sanitaire
 - l'efficacité des solutions passives
 - les consommations de climatisation
 - à la fois
 - À l'échelle du quartier
 - Airl'intérieus ceut in atiment matologie Toulouse 07/07/2022 Anaïs MACHARD / 10

Merci pour votre attention

